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In cohort mortality studies, there often is interest in associations between an exposure of primary interest and

mortality due to a range of different causes. A standard approach to such analyses involves fitting a separate re-

gression model for each type of outcome. However, the statistical precision of some estimated associations may be

poor because of sparse data. In this paper, we describe a hierarchical regression model for estimation of parame-

ters describing outcome-specific relative rate functions and associated credible intervals. The proposedmodel uses

background stratification to provide flexible control for the outcome-specific associations of potential confounders,

and it employs a hierarchical “shrinkage” approach to stabilize estimates of an exposure’s associations with mor-

tality due to different causes of death. The approach is illustrated in analyses of cancer mortality in 2 cohorts: a

cohort of dioxin-exposed US chemical workers and a cohort of radiation-exposed Japanese atomic bomb survivors.

Compared with standard regression estimates of associations, hierarchical regression yielded estimates with im-

proved precision that tended to have less extreme values. The hierarchical regression approach also allowed the

fitting of models with effect-measure modification. The proposed hierarchical approach can yield estimates of as-

sociation that are more precise than conventional estimates when onewishes to estimate associations with multiple

outcomes.

cohort studies; epidemiologic methods; models, statistical; Poisson regression; statistics

Abbreviations: HPD; highest posterior density; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.

Occupational and environmental cohort mortality studies
often examine associations between an exposure of primary
interest and a number of different mortality outcomes. Typi-
cally, these exposure-mortality associations are estimated one
at a time (1–6). Illustrative examples include analyses of
cause-specific mortality among populations exposed to ioniz-
ing radiation, dioxin, and benzene (3, 6, 7). Often, the statistical
precision of outcome-specific estimates is poor, particularly
if there are relatively few exposed events for each type of out-
come. In the extreme case, regression models for some out-
come types may fail to converge because of sparse data.

A common strategy for dealing with sparse outcomes is to
combine several outcome types into a broader category, such
as combining specific cancer types into the category “all
cancers,” and perform regression analysis on this broader
outcome group. However, this strategy does not allow infer-
ences regarding associations between exposure and specific

outcome types, is sensitive to decisions about how to com-
bine outcome types, and imposes the assumption of homo-
geneity of association across the combined outcome types.
An alternative to coalescing several outcomes into a broader
category is to employ a hierarchical regression approach.
Hierarchical regression can stabilize imprecise estimates of
regression model parameters, does not assume homogeneity
of association across outcome types, and in some settings
allows estimates of cause-specific association to be obtained
that were not estimable by fitting a separate model for each
outcome type due to sparse data.

While hierarchical models are increasingly being used in
epidemiologic analyses to deal with multiple explanatory
variables (8, 9), there are fewer examples of their use in re-
gression settings in which there is a primary exposure of in-
terest and multiple outcomes under investigation (10). In the
current paper, we describe a hierarchical Poisson regression
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model for estimation of parameters describing outcome-
specific relative rate functions. We present and illustrate the
proposed approach using empirical data.

METHODS

Consider a cohort study in which mortality data for J out-
come types have been ascertained over a period of follow-up.
We use the term outcome type to refer to types or classes of
outcomes, as in analyses of cancer deaths where events are
classified by type of malignancy. Let Z denote levels of the
exposure of primary interest and S denote levels of strata de-
fined by other covariates. A typical analytical data structure
generated for the purposes of Poisson regression analyses
might consist of cumulative person-time, P, and total number
of deaths due to j = 1 . . . J outcome types, Dj, cross-
classified by levels of covariates Z and S. A standard ap-
proach involves fitting a separate regression model for each
type of outcome; for example, analysis of a single outcome
type, j = 1, under a log-linear rate model may take the form
λ1ðα1

s ; β
1Þ ¼ expðα1

s þ β1ZÞ; where λ1(·) is the rate of out-
come type j = 1, α1

s is the baseline rate in stratum S = s, and
β1 is the parameter describing the change in the log relative
rate of outcome type j = 1 as a function of Z. Throughout this
paper, the superscript j on parameters denotes their depen-
dence on outcome type.
Alternatively, the J outcome types could be modeled

jointly. A general relative rate model for the cause-specific
mortality rates can be expressed as

λjðα j
s ; β

jÞ ¼ expðα j
sÞϕ jðZ; β jÞ; j ¼ 1; 2; : : :; J; ð1Þ

where α j
s are the outcome-type–specific associations with co-

variates and φ j(Z; β j) is the function describing the change in
the relative rate for outcome type j as a function of Z. Exten-
sions of expression 1 may allow for effect modification of the
relative rate function, φ j(·), by covariates.
For each cell of a grouped data tabulation defined by the

cross-classification of exposure, Z, and covariates, S, there
areDj events of j outcome types; these are analyzed as though
the numbers of observed events are independent Poisson ran-
dom variables with mean values Pλj(·). The likelihood for
such models can be written as the product of the outcome-
type–specific terms, each term being identical to the likeli-
hood obtained if that outcome were the only one analyzed,
with other outcomes treated as noninformative censoring
events; consequently, a simple way to fit this joint model
using standard software for maximum likelihood methods
applied to Poisson regression is to construct an augmented
data set in which outcome type is an additional dimension
of the grouped data structure (11). The augmented data de-
scribe the cross-classification of person-time and events by
levels of exposure, Z, covariates, S, and outcome type, j,
where the number of events in each cell depends on outcome
type j but the number of person-years at risk does not. The
joint likelihood is obtained by fitting a regression model to
these augmented data.
In expression 1, the parameters, α j

s ; are allowed to depend
freely on strata. Because the number of parameters α j

s may be

large, we employ conditional Poisson regression (12). This is
equivalent to background stratification to obtain adjustment
for the outcome-specific associations indexed by the param-
eters αj

s: Conditioning on parameters α j
s allows us to focus on

estimation of the relative rate function, φ j(·).

Hierarchical models for cause-specific rate ratios

One approach to dealing with statistical imprecision in
cause-specific estimates of association is to coalesce several
sparse outcome types into a broader outcome category. In a
cohort mortality analysis in which each individual can have a
single outcome (as when decedents are classified according
to their underlying cause of death), the practice of combining
J outcome types into a broader category is equivalent to fit-
ting a joint model for these outcome types with a constraint
that these outcome-specific estimates of association are iden-
tical,β1 ¼ β2 ¼ � � � ¼ βJ ¼ β:Such constraints tend to confer
the desired statistical stabilization; however, the implications
of such constraints may be unappealing and implausible.
An alternative is to use a hierarchical model that allows the

β j parameters to be a function of the overall mean association
and residual variation, such as

β j ∼ Nðδ; τ2Þ; for j ¼ 1: : : J; ð2Þ
where β j describes the association between exposure and the
jth outcome type, δ is the prior mean and is interpreted as the
common mean association between exposure and the J out-
come types, and τ2 is the prior variance that allows for devia-
tion of the outcome-specific association from the common
mean. The dose-response coefficients β̂1; : : :; β̂J are shrunk
toward the common mean value, δ; however, the model has
sufficient flexibility to automatically allow the outcome-
specific estimates to deviate from this mean value if there is
substantial evidence in the data to support it. As a conse-
quence, the hierarchical regression approach will, in many
situations, tend to result in outcome-specific estimates of as-
sociation, β̂1; : : :; β̂J ; that have lower mean squared error
than those estimates obtained via a standard (one at a time)
exposure-response analysis of each outcome type (9, 13, 14).
Extensions of the regression model in expression 2 may

allow that the associations between exposure and the J outcome
types are modified by 1 factor, or a set of factors, that define(s)
background strata, S. Investigation of modification of asso-
ciations between exposure and cause-specific mortality tend
to exacerbate problems of statistical imprecision and, in many
settings, result in problems of nonconvergence when analyses
are conducted one outcome type at a time. Hierarchical regres-
sion models can yield stabilization of estimated parameters and
may permit evaluation of effect-measure modifiers in settings
where such estimates would be excessively unstable if the out-
come types were modeled one at a time.
The degree to which the outcome-type–specific estimates

are shrunk towards the common mean depends upon τ2, the
variance for the outcome-specific associations (14). When τ2

is large, there will be little shrinkage, and the outcome-specific
estimates will be close to those obtained by fitting outcome
types one at a time, as in a standard analysis; as τ2 approaches
0, the fitted exposure-response associations will approach an
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analysis conducted under a constrained model (e.g., an anal-
ysis that constrains all outcomes to have an association equal
to the common mean). This variance parameter, τ2, can be
treated as an unknown parameter in the hierarchical regres-
sion model so that the data directly inform the estimated
value of τ2 (14, 15). Details regarding implementation of
this hierarchical model using the MCMC procedure in the
SAS statistical software package (SAS Institute, Inc., Cary,
North Carolina) are provided in Appendix 1. Simulation stud-
ies of hierarchical regression approaches have been reported
previously (13, 16, 17); to illustrate the performance of the
approach described in this paper, we present simulations in
the Web Appendix (available at http://aje.oxfordjournals.
org/), which includes Web Table 1.

Example 1: TCDD exposure and solid cancer mortality

To illustrate this approach, we use data from a cohort study
that included 3,538 male workers who had been employed
between January 1, 1942, andDecember 31, 1984, at 8 US in-
dustrial plants that produced chemicals contaminated with
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (7, 18). Vital
status follow-up was conducted through December 31, 1993,
and deaths were classified by underlying cause of death,
coded according to the revision of the International Classifi-
cation of Diseases in effect at the time of death.

Prior analyses of this cohort have focused on the associa-
tion between TCDD and all cancer mortality (7, 18). In the
current analyses, we examined deaths due to 19 different cate-
gories of cancer. Estimated daily TCDD exposure was derived
using a job-exposure matrix; the exposure scores reflected a
quantitative exposure ranking of workers with respect to rel-
ative level of TCDD exposure among workers, rather than as-
signment of a specific dose of TCDD. For each worker, these
scores were accumulated over time to derive a cumulative
TCDD exposure score; and, for comparability with previ-
ously reported analyses of these data, cumulative exposure
scores were log-transformed and lagged 15 years (7). A tab-
ulation of the number of person-years and events was con-
structed and analyzed using Poisson regression methods
with background stratification on attained age (in 5-year
groups), birth cohort (in decades), race (nonwhite vs. white),
and outcome type. First, we estimated a separate parameter
for each outcome-specific association using maximum like-
lihood methods for Poisson regression, where the relative
rate function conformed to the exponential model, φ j(d; β j) =
exp(β jd), andwhere d denotes the natural log of the cumulative
TCDD score, lagged 15 years. Second, we fitted a hierarchical
model in which the estimates, β j, were shrunk to a grandmean,
as in expression 2. The hierarchical regressionmodel was fitted
using a Markov chain Monte Carlo algorithm; in each model,
computations were run for a minimum 100,000 iterations, with
the first 10,000 iterations discarded to allow for initial con-
vergence. A diffuse prior was specified for δ, and the vari-
ance parameter, τ2, was assumed to follow a uniform (0.001,
10) distribution. We chose these prior distributions to allow
the data to drive inference as much as possible; however, for
settings in which prior information is available, it should be
incorporated. From Markov chain Monte Carlo samples, we
estimated model coefficients and derived an estimate of the

associated 95% highest posterior density (HPD) credible in-
terval, which is a Bayesian analog to the frequentist confi-
dence interval. We performed sensitivity analyses in which the
inverse of the variance parameter, τ2, was assumed to follow a
gamma (0.01, 0.01) distribution.

Example 2: ionizing radiation and cancer mortality

To further illustrate this approach, we used data from a re-
cent analysis of associations between radiation dose and inci-
dence of solid tumors among 80,180 people included in the
Life Span Study, a study of Japanese atomic bomb survivors.
Cohort members had an assigned estimated radiation dose
based on the most recent DS02 dosimetry system, were alive
and not known to have had cancer before January 1, 1958,
and had been in Hiroshima or Nagasaki, Japan, at the time
of the atomic bombings in 1945 (19, 20). We used a publicly
available cross-tabulation of person-time and counts of solid
cancers by city, sex, radiation dose, distance from the hypo-
center (within 3 km or 3–10 km), and categories of calendar
time, attained age, and age at exposure. We focused on anal-
ysis of mortality due to 17 types of solid cancer.

A quantitative exposure score was assigned to estimate the
change in relative rate given a 1-unit change in that exposure
score. Rather than assign the same score for all outcome types,
the assigned score, dj, varies across outcome types because
organ-specific doses have been estimated, based on the DS02
dosimetry system (21), and different organ-specific doses are
used as the exposure score for different outcome types (22).
Radiation dose–mortality associations were quantified using
Poisson regression in which the relative rate function followed
the linear excess relative rate model, φ j(dj, β j) = 1 + β jd j. This
linear excess relative rate model has been the preferred model
for analyses of these data in recent major publications and Na-
tional Academyof Sciences reports (23–25). As in prior analy-
ses of these data (19, 20), parameters were included describing
effect-measure modification by sex (a binary variable that
took a value of −1 for males, else 1), s, attained age (centered
at age 70 years), a, and age at exposure (centered at age 30
years), e, leading to a model of the form

φ jðs; a; e; d jÞ ¼ 1þ β jd j expðγ j
1aþ γ j

2eÞð1þ γ j
3sÞ:

First, we estimated a separate parameter for each outcome-
specific association using standard maximum likelihood; sec-
ond, we fitted a hierarchical model in which the estimates, β j,
were shrunk to a grand mean, as in expression 2. As in prior
analyses of these data (20), the parameters describing effect-
measure modification by attained age, age at exposure, and
sex, γ1, γ2, and γ3, were constrained to be equal to the values
obtained for all solid cancers (i.e., these parameters were con-
strained to equal the values −1.50, −0.21, and 0.24, respec-
tively). Finally, we fitted a model that allowed variation by
outcome type in estimates of the parameters for effect-measure
modification by attained age and age at exposure, γ1 and γ2,
under the model

φ jðs; a; e; d jÞ ¼ 1þ β jd j expðγ j
1aþ γ j

2eÞð1þ γ j
3sÞ;
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where β j∼N(δ, τ2), for j = 1 . . . J, and γ j
k ∼ Nðθk; σ2Þ; for

k = 1, 2 and j = 1 . . . J. The hierarchical regression models
were fitted using a Markov chain Monte Carlo algorithm in
SAS. A diffuse prior was specified for δ and θk, and τ

2 and σ2

were assumed to follow a uniform (0.001, 10) distribution (14,
15). From Markov chain Monte Carlo samples, we estimated
model coefficients and the 95% HPD interval. We performed
sensitivity analyses in which the inverse of the variance parame-
ter, τ2, was assumed to follow a gamma (0.01, 0.01) distribution.

RESULTS

TCDD cohort

When considering results obtained by standard Poisson re-
gression, the maximum likelihood estimates of association
between cumulative TCDD exposure (lagged 15 years) and
cancers of the brain, pancreas, connective tissue, and larynx
were among those of largest magnitude. The maximum like-
lihood estimates for cancers of the esophagus, rectum, perito-
neum, and buccal cavity were negative. Figure 1A provides
a Q-Q plot of the maximum likelihood estimates of the 19
cause-specific associations. These estimates appear approxi-
mately normally distributed; the mean and variance of the
outcome-specific estimates of association were 0.06 and
0.03, respectively.
Cause-specific estimates of associations between cumula-

tive TCDD exposure and site-specific cancer mortality ob-
tained by hierarchical regression tended to have substantially
tighter credible intervals than estimates obtained by standard
Poisson regression (Figure 2A). None of the hierarchically

stabilized central estimates were negative. The estimated as-
sociation between TCDD and lung cancer obtained using the
hierarchical regression, which was relatively precise in the
cause-specific analyses conducted by maximum likelihood,
was very similar to the central estimate obtained by hierarchi-
cal regression; there was a small improvement in precision, as
reflected by a slightly narrower 95% credible interval than the
95% confidence interval obtained using maximum likelihood
methods. The estimates of association between TCDD and
cancers of the brain, pancreas, larynx, and connective tissue
(which were among the largest-magnitude associations esti-
mated by standard Poisson regression) were shrunk towards
the overall mean and stabilized (as reflected by a narrower
confidence interval). The overall mean estimated exposure-
response association was 0.10 (95% HPD credible interval:
0.01, 0.19); the variance parameter, τ2, was estimated as 0.01
(95% HPD credible interval: 0.00, 0.03). Similar results were
obtained in sensitivity analyses specifying a gamma distribu-
tion for 1/τ2.

Life Span Study

In analyses of the Life Span Study data, point estimates for
all cancer types obtained through maximum likelihood re-
gression were positive, except for cancer of the gallbladder.
Figure 1B provides a Q-Q plot of the 17 outcome-specific
estimates of association; the mean and variance of the outcome-
specific estimates of association were 0.42 and 0.09, respec-
tively. For most cancer outcomes, central estimates obtained
using hierarchical regression were similar in magnitude to the
maximum likelihood estimates obtained by standard Poisson
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Figure 1. A) Q-Q plot of estimated change in the log relative rate of death due to 19 types of solid cancer per 1-unit increase in cumulative dioxin
exposure (lagged 15 years) (obtained by maximum likelihood) in a cohort of US male chemical workers exposed to 2,3,7,8-tetrachlorodibenzo-
p-dioxin, 1942–1993. B) Q-Q plot of the sex-averaged excess relative rate of death due to 19 types of solid cancer per sievert at an attained age
of 70 years following exposure to the 1945 atomic bombings in Hiroshima and Nagasaki, Japan, at age 30 years (obtained by maximum likelihood),
1950–2000.
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regression (Figure 2B); however, cause-specific estimates
obtained through hierarchical regression tended to have nar-
rower credible intervals than the confidence intervals obtained
by standard Poisson regression (Table 1). The estimated over-
all mean association was an excess relative rate per sievert of
0.43 (95% confidence interval: 0.26, 0.59); the estimate of τ
was 0.09 (95% confidence interval: 0.02, 0.19). Similar re-
sultswere obtained in sensitivity analyses specifying agamma
distribution for 1/τ2.

We also fitted a model that allowed variation in estimates
of the parameters γ1 and γ2 by outcome type (Table 1). For
most cancer outcomes, central estimates obtained using this
hierarchical regression were similar to the maximum likeli-
hood estimates obtained by Poisson regression; and cause-
specific estimates obtained by means of this hierarchical
regression model also tended to have narrower credible inter-
vals than the confidence intervals obtained by standard Poisson
regression. The mean values for the parameters for modification
by age at exposure and attained age were −0.17 and −1.63,
respectively.

DISCUSSION

Increasingly, hierarchicalmodels are used to deal withmul-
tiple explanatory variables in an analysis, particularly when
data are sparse or exposures are correlated (8, 26, 27). Less
common is use of hierarchical models in a setting in which
there is a single exposure variable of primary interest but mul-
tiple outcome types. However, often in occupational and en-
vironmental cohort studies there is a primary exposure of
interest and a range of diseases or causes of death under in-
vestigation. This is also true in other substantive areas of ep-
idemiology where investigators examine associations between
a primary exposure variable of interest and multiple outcome
variables.

Our proposed approach involves joint modeling of associ-
ations between the exposure and multiple outcome types.
Some authors have advocated for joint modeling of occupa-
tional or environmental exposure-disease associations as an
approach to reduce concerns about interpretation of P values
and confidence intervals in settings of multiple comparisons
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Figure 2. A) Regression model estimates of the change in the log relative rate (RR) of death due to 19 types of solid cancer per 1-unit increase in
cumulative dioxin exposure (lagged 15 years) obtained by maximum likelihood (diamonds; 95% confidence intervals indicated by whiskers) and
hierarchical regression with “shrinkage” towards the commonmean (circles; 95% highest posterior density credible intervals indicated by whiskers)
in a cohort of USmale chemical workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin, 1942–1993. B) Regressionmodel estimates of the change
in the excess RR of death due to 17 types of solid cancer per 1-unit increase in radiation dose obtained by maximum likelihood (diamonds; 95%
confidence intervals indicated by whiskers) and hierarchical regression with “shrinkage” towards the common mean (circles; 95% highest posterior
density credible intervals indicated by whiskers) among survivors of the 1945 atomic bombings in Hiroshima and Nagasaki, Japan, 1950–2000.
(“Remainder” represents cancers other than the site-specific cancers listed.) CNS, central nervous system; NHL, non-Hodgkin’s lymphoma.
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(28). Others have advocated for joint modeling of exposure-
outcome associations as an approach to facilitate modeling
of, and formal statistical evaluation of heterogeneity in, the
magnitudes of association between exposure and different
types of outcomes (11). In contrast, in the current paper we
focus on joint modeling of exposure-outcome associations
in the context of a hierarchical model used to stabilize estima-
tion of a set of cause-specific exposure-disease associations.
By describing a method that may help with estimation of as-

sociations between exposure and specific outcome types, we
are not suggesting that there is anything inherently wrong with
analyses of broader outcome groups constructed by aggregating
several outcome types. Broad groupings of outcomes—for ex-
ample, analysis of a category such as all cancer deaths—may be
of interest from a public health perspective, or because the
investigator believes that the sensitivity and specificity of
classification of outcomes are acceptable for broad categories
(such as all cancers) but not for narrower categories. None-
theless, it is reasonable that concerns about statistical impreci-
sion lead investigators to aggregate outcomes despite interest
in outcome-specific estimates of association. In the latter

setting, a hierarchical regression approach may be useful
for reducing mean squared error in the cause-specific esti-
mates of association, and in some instances may permit esti-
mation of associations that are not estimable when fitting
regression models one outcome type at a time (29, 30). In
the proposed hierarchical regression, the aggregation of out-
come types into a broad group serves to help stabilize statis-
tical estimates of outcome-specific associations, with the
grouping treated as a type of prior information incorporated
into the regression model.
In our first empirical example, there was substantial insta-

bility in most of the outcome-specific estimates of association
derived using standard maximum likelihood methods, which
precluded a strong conclusion regarding the direction and
magnitude of most of the exposure-response functions for
these outcome types (Figure 1). A hierarchical regression
modelwasfitted that assumed a second-stage parametric func-
tion in which outcome-specific associations were random
variables distributed around a common mean. This resulted
in outcome-specific estimates of association that were stabi-
lized relative to estimates derived via a standard analysis; and

Table 1. Sex-Averaged Excess Relative Rate of Death Due to 19 Types of Solid Cancer per Sievert at an Attained

Age of 70 Years Following Exposure to the 1945 Atomic Bombings in Hiroshima and Nagasaki, Japan, at Age

30 Years, Obtained Using 2 Different Statistical Methods, 1950–2000a

Cancer Site
or Type

Statistical Method

Maximum Likelihood
(Model 1)b

Hierarchical Regression

Model 2c Model 3d

ERR 95% CI ERR 95% HPD CrI ERR 95% HPD CrI

Kidney 0.40 −0.12, 0.93 0.46 0.09, 0.85 0.43 0.06, 0.80

Esophagus 0.62 0.04, 1.20 0.56 0.17, 0.97 0.52 0.14, 0.91

Prostate 0.19 −0.42, 0.81 0.33 −0.11, 0.76 0.33 −0.09, 0.76

Bladder 0.84 0.21, 1.47 0.60 0.22, 1.02 0.64 0.25, 1.06

Pancreas 0.39 −0.04, 0.81 0.42 0.09, 0.78 0.40 0.09, 0.74

Remaindere 1.15 0.78, 1.53 0.95 0.65, 1.25 0.87 0.53, 1.24

Ovary 0.27 −0.08, 0.62 0.35 0.05, 0.68 0.37 0.06, 0.72

CNS 0.37 0.05, 0.68 0.40 0.11, 0.68 0.37 0.10, 0.70

Oral 0.34 0.06, 0.62 0.39 0.14, 0.65 0.37 0.12, 0.64

Lung 0.70 0.44, 0.96 0.67 0.44, 0.92 0.67 0.46, 0.92

Gallbladder −0.06 −0.31, 0.18 0.09 −0.17, 0.39 0.09 −0.18, 0.38

Colon 0.48 0.26, 0.70 0.49 0.28, 0.69 0.45 0.24, 0.69

Rectum 0.14 −0.08, 0.36 0.20 −0.01, 0.43 0.21 −0.03, 0.45

Liver 0.31 0.12, 0.50 0.33 0.16, 0.52 0.34 0.14, 0.56

Breast 0.67 0.48, 0.86 0.66 0.49, 0.85 0.69 0.45, 0.96

Stomach 0.32 0.21, 0.43 0.33 0.22, 0.44 0.33 0.20, 0.45

Uterus 0.03 −0.07, 0.14 0.07 −0.04, 0.19 0.06 −0.06, 0.18

Abbreviations: CI, confidence interval; CrI, credible interval; CNS, central nervous system; ERR, excess relative

rate; HPD, highest posterior density.
a Estimates were obtained by maximum likelihood (with 95% CI) and hierarchical regression with “shrinkage”

towards the common mean (with 95% HPD CrI).
b φ j ðs; a;e; d j Þ ¼ 1þ β j d j expðγ j

1aþ γ j
2eÞð1þ γ j

3sÞ, where γ1 =−1.50, γ2 =−0.21, and γ3 = 0.24.
c φ j ðs; a;e; d j Þ ¼ 1þ β j d j expðγ j

1aþ γ j
2eÞð1þ γ j

3sÞ, where γ1 =−1.50, γ2 =−0.21, γ3 = 0.24, and β j∼N (δ, τ2).
d φ j ðs; a;e; d j Þ ¼ 1þ β j d j expðγ j

1aþ γ j
2eÞð1þ γ j

3sÞ, where γ j
k ∼ Nðθk ; σ2Þ for k = 1, 2, γ3 = 0.24, and β j∼N (δ, τ2).

e Cancers other than the site-specific cancers listed.
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for those outcome types that were relatively precisely esti-
mated, the estimated exposure-response association was
similar in magnitude to the estimate obtained via a standard
analysis. In contrast, prior analyses of associations between
TCDD and cancer mortality focused on the broad outcome
group of all cancer mortality; such an analysis implicitly as-
sumes a common association between exposure and all types
of cancer. The hierarchical Poisson regression model results
suggest that a number of cancer mortality outcomes, includ-
ing deaths due to cancer of the colon, liver, lung, larynx, and
brain, exhibited relatively precise positive associations with
cumulative TCDD exposure in the hierarchical regression
analysis. This illustrates how a hierarchical regression model
provides a balance between these modeling approaches and
may yield results that might tend to reduce mean squared
error in resultant estimates.

In our second empirical example, involving radiation–
cancer mortality associations among Japanese atomic bomb
survivors, there was modest evidence of “shrinkage” or stabi-
lization of estimated associations between exposure and dif-
ferent outcome types. Moreover, given the strong evidence
of modification of the effects of ionizing radiation by factors
such as age at exposure and attained age, we illustrated how
the proposed hierarchical modeling approach allows for hier-
archical modeling of effect-measure modifiers.

This hierarchical regression approach has similarities to
empirical Bayes methods applied to a set of cause-specific es-
timates of association (10, 20). Under the empirical Bayes
approaches employed in some recent papers, the investigator
commences by deriving a collection of maximum likeli-
hood estimates of the outcome-specific associations of in-
terest and, in a second-stage analysis, employs an empirical
Bayes method to stabilize these estimates by inverse variance
weighting (20, 31). Such a 2-stage approach works if cause-
specific estimates were reliably and validly estimated in the
first stage. In contrast, joint modeling of the outcome in a hi-
erarchical framework can overcome problems that arise when
some outcome-specific estimates cannot be obtained because
of poor model convergence. Furthermore, as illustrated in our
second example, the hierarchical modeling approaches de-
scribed here readily extend to more flexible modeling of
the exposure-outcome associations.

This hierarchical approach is useful when a group of pa-
rameters to be modeled as following a normal distribution
is carefully chosen, such that exposure-outcome associations
within the group are similar. Under a hierarchical regression
approach, the model represents the analyst’s belief about the
pattern of variation in outcome-specific associations; how-
ever, the hierarchical modeling approach allows adjustment
of some aspects of the parametric model for the exposure-
response association to better conform to the data. In some
settings, the exposure of primary interest may be protective
for some outcomes and increase risk of other outcomes. In
principle, this is not a problem, as long as the group of param-
eters can be appropriately modeled as exchangeable and as
following the specified distribution. More generally, the as-
sumption that a group of parameters can be modeled as fol-
lowing a specified distribution represents prior knowledge
incorporated into the analysis; a consequence of assuming
this hierarchical structure is a tendency to obtain more precise

credible intervals than would be obtained in the absence of
such an assumption. Of course, if a critic disagrees with a
choice of prior, this may help to focus attention on a specific
issue of disagreement and suggests a way in which sensitivity
analysis can be used to assess how different beliefs regarding
the prior alter results.

Our illustrative models assumed a single normal distri-
bution of outcome-specific associations. In some cases, the
investigator may have a strong prior belief about the cate-
gorization of outcomes into specific groups. For example,
β1, . . ., βk are parameters describing associations between
exposure and 1 class of outcome and belong to 1 group,
while βk+1, . . ., βJ are parameters describing associations
between exposure and a second class of outcome and belong
to a second group; this could be readily handled by extending
expression 2 to a model for 2 common distributions, such as
β j ∼ Nðδ1; τ21Þ; for j = 1 . . . k, and β j ∼ Nðδ2; τ22Þ; for j = k +
1 . . . J. Alternatively, we could extend expression 2 by ap-
plying a mixture prior that allows shrinkage in a more flexible
fashion and allows the data to determine the classes to which
the coefficients should belong.

We used vague, weakly informative priors in all analyses
to more clearly show the performance of the modeling tech-
niques. While in some situations researchers may have little
prior information to include in analyses, this will not always
be the case. Model performance can be further improved in
many situations by formally incorporating any prior informa-
tion that exists. These models were readily implemented
using the SAS statistical package (Appendix 2). While we
focused on Poisson regression analysis of tabulations of
person-time and events, a similar approach could be devel-
oped for a hierarchical proportional hazards regression, fol-
lowing a similar approach of data augmentation to allow
joint modeling of the cause-specific hazards. Further, our
approach assumed that the outcomes of interest were inde-
pendent, and we did not consider the possibility of competing
risks. Extensions of this model to incorporate competing
risks could make the method more broadly applicable.

In summary, the proposed hierarchical regression approach
provides a useful complement to standard approaches for as-
sessing outcome-specific exposure-response functions in ep-
idemiologic cohort settings, and the results of such analyses
may help inform conclusions regarding which outcome-
specific estimates of association warrant further investigation.
This method can be applied in a range of substantive inves-
tigations in which an investigator is interested in joint mod-
eling of associations between an exposure of primary interest
and a set of categories of cause of death.
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APPENDIX 1

Hierarchical Poisson Regression

Assume we have an analytical data set, one, generated for the purposes of Poisson regression analyses consisting of counts of
person-time, and counts of each type of event of interest, dj=1, dj=2, . . ., dj=J, cross-classified by levels of covariates S and a
primary exposure of interest, Z.
We can create an augmented table, two, that includes strata defined by S, Z, and j; the analytical data structure consists of counts

of person-time, pyr, and the number of deaths, dths, in each stratum defined by the cross-classification of levels of explanatory
variables S, Z, and outcome type j. The number of deaths depends upon the outcome type, j, while the number of person-years is
the same for all outcome types j within levels of the explanatory variable, Z and S.
In the proposed hierarchical model, background stratification is used to obtain adjustment for associations with covariates; this

is implemented by conditional Poisson regression. To facilitate estimation of the conditional Poisson regression model, we can
create a transformed analytical data structure, three, that includes 1 observation per stratum defined by cross-classification of
covariates S and outcome type j, as has been described previously (12). We also create variables _ncovals and _totcases that
denote the total number of exposure values and the total number of cases, respectively, in each stratum.

APPENDIX 2

SAS Code for Regression Models

A hierarchical regression model that shrinks the parameters for associations between exposure and outcome-specific mortality
to a commonmean (with background stratification on the covariates describing cause-specific covariate associations) can be read-
ily fitted using the PROC MCMC procedure in the SAS statistical software package. Illustrative SAS code is provided below.
The arrays _cases, _pt, and z index the values for the counts of events, person-time, and levels of the exposure variable(s) of

interest in each stratum of the analytical data structure. The length of the arrays will depend upon the analytical data structure. In
the illustrative code below, the variables _cases1-_cases14 describe the numbers of events observed in distinct levels of exposure
within strata, _pt1-_pt14 describe the associated numbers of person-years at risk within strata, and z1-z14 describe the stratum-
specific exposure scores. The “parms” statement defines the parameter(s) to be estimated. In this illustrative example, there are 15
outcome types; the parameters b1-b15 estimate the outcome-type–specific associations of interest. These parameters are stabi-
lized by specifying that they arise from a single normal distribution with mean δ and variance τ. The rate ratio function conforms
to a standard log-linear model.

proc mcmc data=three nbi=5000 nmc=150000 ;
array c{*} _cases1-_cases14;
array p{*} _pt1-_pt14;
array z{1,14} z1-z14;
array b{15};
parms b: 1 ; parms delta 1; parms tau .1;
prior b: ∼normal(delta,var=tau);
prior delta ∼normal(0,var=100);
prior tau ∼uniform(0.001,10);
num = 1; den=0; nc= _ncovals ;
do i = 1 to _ncovals ;

phi= exp( b{k}*z{1,i} ) ;
num = num*(phi**c{i}); den = den+phi*p{i};

end;
logl = log(num) - (_totcases*log(den)) ;
model _totcases∼ general(logl); run;
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