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Abstract In recent years, Bayesian methods have been used
more frequently in epidemiologic research, perhaps because
they can provide researchers with gains in performance of
statistical estimation by incorporating prior information. We
discuss some of the more common types of Bayesian models
in the epidemiologic literature including subjective priors for
parameters of interest, weakly informative priors, and hierar-
chical Bayesian priors. We suggest potential avenues for
future research and methods for implementation of Bayesian
techniques.

Keywords Bayes . Hierarchical . Multilevel . Shrinkage .

Mean squared error . Data augmentation .MCMC

Introduction

Two forms of statistical inference dominate the field of statis-
tics: frequentist and Bayesian. Frequentist estimation empha-
sizes long-run properties of estimators, such as their bias and
mean squared error (MSE). Bayesian estimation, conversely,
emphasizes making probability statements about the parame-
ters in statistical models, given some data. For example,
Bayesian estimation allows one to make statements regarding
the probability that an effect lies between two points, such as
the 2.5th and 97.5th values of a parameter’s distribution. The
two modes of estimation answer different, but complementa-
ry, questions; a Bayesian estimator making a statement about
the effect size being between two points should be interested

in the long-run frequency of being correct when making such
a statement.

Epidemiology, which grew as a discipline alongside the
development of frequentist theory and methods, has largely
adopted frequentist inferential methods. Despite notable ex-
ceptions [1], the vast majority of early statistical analysis in
epidemiology was frequentist. Only in recent years has ex-
plicit Bayesian analysis become more widespread in epidemi-
ology [2].We believe this shift has occurred largely because of
the appealing properties inherent in Bayesian estimators.
Crudely, Bayesian estimators can often be viewed as weighted
averages between a prior distribution and the estimate one
would obtain from only examining the data at hand [3–5].
That is, the estimate one would obtain from the data alone is
moved, or shrunk, in a direction influenced by the prior
distribution. This results in some appealing statistical advan-
tages for Bayesian methods. In this article, we review shrink-
age estimation and discuss two forms commonly seen in the
epidemiologic literature: (1) simple shrinkage towards a fixed
point and (2) shrinkage towards nearby estimates via hierar-
chical regression. Further, we highlight techniques for imple-
mentation and offer possible fruitful directions for future
application of Bayesian analysis in epidemiology.

Review of Shrinkage Estimation

Common frequentist methods (particularly for regression
models) require a researcher to specify a model for the
likelihood of the data, depending on parameters of interest.
Under assumptions of no systematic error (such as those due
to uncontrolled confounding, selection bias, information bias,
or model misspecification) and with large sample sizes, max-
imum likelihood estimators (MLEs) are asymptotically nor-

mally distributed and unbiased. For example, an estimator, bβ ,
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from a regression model has a normal sampling distri-
bution centered on the true parameter estimate, β, with
variance, se2.

bβ ∼ N β; se2
! "

ð1Þ

Common frequentist point estimates and confidence in-
tervals typically follow directly from this expression.
Bayesian estimation, conversely, is based on the posterior
distribution; that is, the distribution of β conditional on the
observed data and the prior distribution. This requires a
researcher to specify a model for the likelihood of the data
collected from their study as well as a prior distribution for
unknown parameters. A subjective Bayesian would place a
prior distribution on β in equation (1) to express his/her
uncertainty in the true parameter value, before conducting
the study:

β e N β0; τ
2! "

ð2Þ

The normal distribution is a computationally convenient
choice, though not the only one that could be used. The prior
distribution for β is centered on β0, which would be a subjec-
tive Bayesian’s “best guess” at the true effect size and τ2, the
prior variance, is a measure of the researcher’s certainty in that
“best guess.” Prior 95 % intervals can be calculated as β0±
1.96 τ; these prior intervals represent a range of values within
which the researcher is 95% certain the true effect lies, prior to
collecting new data.

Bayesian estimation is based on the posterior distribu-
tion, which is obtained by combining the likelihood with
the prior distribution [5, 6•, 7–9]. In simple well-
identified models such as those laid out in equations (1)
and (2), with reasonable sample sizes, a posterior effect
estimate, θ, is approximately a weighted average of the
frequentist effect estimate and the mean of the prior dis-
tribution [8]. The weights are a function of the respective
variances:

θ ¼ bβ
1#
se2

1#
τ2 þ

1#
se2

þ β0

1#
τ2

1#
τ2 þ

1#
se2

ð3Þ

As the variance in the prior distribution (2) decreases
relative to the variance in the sampling distribution (1), the
weight attached to the second term in the summation increases
and the posterior effect increasingly shrinks away from the
MLE and towards the prior mean. If the sampling distribution
variance is far smaller than the prior variance (se2≪τ2), the
posterior estimate will approximate the frequentist point

estimate. Conversely, if the prior variance is far smaller than
the sampling distribution variance (se2≫τ2), the posterior
estimate will approximate the prior mean.

Bayesian estimation, in this simple setting, can usefully be
thought of as akin to a meta-analysis of two studies. The mean
and 95 % interval estimate from the prior distribution can be
viewed as the summary estimates from the first study in the
meta-analysis, while the obtained frequentist estimate and
95 % interval estimate are the second study. The weights
used to combine the prior mean and study result in expres-
sion (3) are, indeed, equivalent to the inverse variance
weights often used in a fixed-effects meta-analysis [10].
The meta-estimate obtained from using inverse-variance
weights can serve as a very good approximation to the
Bayesian posterior distribution [9].

That the posterior distribution is a weighted average of the
prior and likelihood is a natural, and appealing, consequence of
Bayesian estimation. However, shrinkage also has desirable
frequentist properties and non-Bayesians are also enthusiastic
proponents of shrinkage estimators. In the frequentist litera-
ture, methods that induce shrinkage are referred to as penalized
likelihood methods [11–13]. There is generally a perfect cor-
respondence between frequentist penalized likelihoodmethods
and Bayesian methods: the penalty placed on the likelihood is
proportional to the prior distribution. For instance, the penal-
ized likelihood approach known as ridge regression arises from
using a normal prior as in (2) with β0 =0. The adoption of these
models in traditional frequentist estimation results from the fact
that, in a broad range of applications, shrinkage estimators
enjoy desirable frequentist properties, such as reduced MSE
[5, 14–16].

The simple form of the sampling distribution in (1) and the
prior in (2) allow us to easily examine the long-run frequentist
characteristics of the Bayesian estimator in (3). Before pro-
ceeding to theMSE of the estimate, we consider the amount of
bias (the difference between the expected value of this esti-
mator and the truth), if any, introduced by using this Bayesian
estimator:

Bias θð Þ ¼ β0 − βð Þ
1#
τ2

1#
τ2 þ

1#
se2

ð4Þ

In the event that the prior mean, β0, is chosen such that it is
exactly equal to the true parameter value, the Bayesian esti-
mator will be unbiased. Alternatively, if the prior variance is
infinite, the bias will be zero. This type of prior distribution
with infinite variance is referred to as an improper prior; in
many simple models, a Bayesian estimator based on an im-
proper prior such as this is equivalent to the frequentist MLE
estimator. More generally, however, the bias in (4) will depend

104 Curr Epidemiol Rep (2014) 1:103–109



on the relative magnitude of se2 and τ2, as well as how far the
prior mean is from the truth.

If bias were our sole concern, the Bayesian estimator would
seemwholly deficient. However, because Bayesian estimators
incorporate prior information, they exhibit a decreased vari-
ance relative to traditional frequentist estimators. The MSE of
an estimator is a measure of the variability of this estimator
around the truth. MSE can be calculated as the sum of the
square of the bias and the variance of the estimator:

MSE θð Þ ¼ β0 − βð Þ
1
#
τ2

1=τ2 þ 1=se2

" #2

þ
1#
se2

1=τ2 þ 1=se2
! "2 ð5Þ

Because MSE incorporates both bias and variance, it is
possible for an estimator to be biased with low variance and
thus have lower MSE than an unbiased estimator with high
variance. Indeed, the Bayesian estimator in (3) can be just
such an estimator.

We consider a hypothetical example to illustrate the poten-
tial for improved frequentist properties when using Bayesian
estimators. Suppose three researchers (A, B, and C) are inter-
ested in estimating the effect of cumulative occupational as-
bestos exposure on the risk of mesothelioma. The researchers
plan a study and are able to identically repeat the study a large
number of times. Further, the true relative risk (RR), unbe-
knownst to the researchers, is β =log(RR)=log(2) with se2=
0.1. Researcher A will analyze each study using frequentist
methods associated with equation (1), while researchers B and
C will use the Bayesian estimator in equation (3). Both Bayes-
ian researchers use substantive knowledge to specify the prior
mean as β0=log(1.2) which, we note, is a poor estimate of the
truth. Researcher B specifies the prior variance as τ2=0.01
(implying prior 95 % interval for the RR: 1.0–1.5) and re-
searcher C specifies τ2=0.5 (implying prior 95 % interval for
the RR: 0.3–4.8). Each researcher analyzes each data set after
each replication of the study. After the large number of
replications is complete, the researchers compare their accu-
mulated effect estimates. Researcher A, the frequentist, finds
that the average of his/her estimated effects is equal to log(2),
and therefore unbiased. Researcher B, the Bayesian with a
more precise prior, has estimated effects that have a bias (on
the log scale) of −0.46. Researcher C, the Bayesian with a less
precise prior, has estimated effects that have a bias (on the log
scale) of −0.09. Both Bayesian researchers have produced
biased effects; their estimates have all been shrunk back to
the incorrectly specified prior mean. Researcher B, who had
the most precise prior specification, induced the most shrink-
age and therefore had the most bias. However, when the
researchers compare their estimates in terms of MSE, re-
searcher A has MSE=0.1, researcher B has MSE=0.22, and
researcher C hasMSE=0.08. Despite producing estimates that

were biased on average, researcher C is also closest to the truth
on average. Indeed, Bayesian estimators often have decreased
MSE, compared with comparable frequentist estimators,
when the prior mean is “close” to the truth. How close is close
enough to guarantee that a Bayesian estimator has lower MSE
than a frequentist estimator is difficult to answer in realistic
settings. However, Bayesian implementations with greater
prior variance are more robust to the misspecification of the
prior mean. Hence, the general practical advice is to err on the
side of greater prior variance [9].

Shrinkage Towards a Fixed Point

Because Bayesian shrinkage estimators can enjoy reduced
MSE when the prior mean is reasonably close to the truth,
many authors have recommended Bayesian analyses as a way
to improve model performance [4, 17, 18•]. A common use of
Bayesian models in epidemiology is to use a vague prior
distribution to shrink effect estimates towards a fixed point:
the prior mean. Vague priors typically set β0=0 in expression
(2) so that all shrinkage is towards the null. This approachmay
be appealing to researchers attempting to limit the number of
false-positive results, and is often viewed as a conservative
approach. What prior variance constitutes a vague prior is
necessarily a subjective consideration. A prior variance that
specifies a suitably vague prior in cardiovascular epidemiolo-
gy may be highly informative for infectious disease epidemi-
ology. Gelman et al. suggest a default shrinkage prior but
replace the normal distribution in (2) with a heavier-tailed
distribution that shrinks large effects to a lesser extent [17].
Hamra et al. suggest using a vague prior,N(β0=0,τ

2=1.33), as
a sensitivity analysis. In their approach, the discrepancy be-
tween the frequentist results and the results using the vague
prior suggest the extent to which the results are dependent on
the relatively small amount of additional information incorpo-
rated via the prior distribution.[18•].

When vague priors have been implemented in epidemio-
logic research, the most common occurrence seems to be in
settings in which investigators attempt to simultaneously esti-
mate many effects. Herdt-Losavio shrunk the effect of various
maternal occupations on risk of birth defects using τ2=1.125
[19]. D’Aloisio (2009) used shrinkage methods to stabilize
estimates of genetic polymorphisms on insulin growth factor
levels and chose their prior variance based on the variability of
their continuous outcome [20]. Similarly, O’Brien (2014)
recently implemented vague priors in the analysis of a large
study of breast cancer susceptibility loci [21].

Because choosing a prior mean that is close to the truth
decreases MSE, an easy way to improve on vague priors is to
estimate the prior mean from previous literature, if any exists.
This use of the prior literature depends not only on the avail-
ability of such literature but also on its quality. Specifying a
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prior mean using poor prior data could easily increase the bias
andMSE of the resulting estimator. However, despite repeated
efforts to encourage the use of such subjective priors by many
authors [8, 9, 22, 23], there are very few examples of prior
distributions explicitly informed by prior studies in the epide-
miologic literature [19, 24].

Hierarchical Shrinkage

The shrinkage estimators described above improve MSE by
directly incorporating prior knowledge about expected or
previously reported effects. Results are shrunk towards a fixed
point; either the null or a point defined by previous research.
In other cases, such as when a researcher is simultaneously
estimating multiple effects, extensions of the prior distribution
in (2) can incorporate substantive knowledge so that effect
estimates shrink toward a point estimated, in part, from the
data [4, 25]. Bayesian estimation in this setting allows effect
estimates to be shrunk towards a function of other estimates in
the model; for instance, effects in a similar exposure group
might all be shrunk towards one another.

For example, Engel et al [26]. examined the effect of
polymorphisms in multiple inflammatory cytokines on
small-for-gestational-age birth. Sparse data and correlation
resulted in unstable estimates when all effects were included
simultaneously in the model. Instead, the authors assumed a
prior distribution in which the effects of the polymorphisms in
proinflammatory cytokines were assumed to be random sam-
ples from one distribution and the effects of polymorphisms in
anti-inflammatory cytokines were assumed to be random
samples from a different distribution; this is often referred to
as hierarchical Bayesian modeling. This type of hierarchical
model assumes the polymorphism effects in each group are
exchangeable. It allows the shrinkage of each individual effect
towards the grand mean of all individual effects in that group.
This prior structure allows for improved performance by
leveraging additional information: the estimate of each effect
“borrows” information from the other effect estimates in that
group through the use of the prior distribution. In the Engel
example, all proinflammatory cytokine, polymorphism effect
estimates were shrunk back to the grand mean of all the
individual estimates. This borrowing of information and
shrinkage towards the group mean can result in substantial
reduction in MSE. This type of hierarchical model can be
implemented in a semi-Bayes (in which prior distributions
are specified for some terms in the model) [4, 15, 27, 28] or
fully-Bayes (in which prior distributions are specified for all
terms in the model) [3] framework. A growing number of
researchers are using these hierarchical methods, including
Hamra et al [29]. who conducted a similar analysis to examine
multiple, highly correlated, asbestos fiber size groups and

O’Brien et al. who examined breast cancer susceptibility loci
[30••].

Proper grouping of effect estimates and hierarchical
structure is a substantive concern that is dictated by the
application. In spatial epidemiology, it is common to esti-
mate effects (such as standardized mortality ratios) in geo-
graphic regions such as states, counties, or even census
tracts [31–34]. The mutually exclusive groupings in the
previous examples are relaxed in this case. Conditional
autoregressive priors are commonly used to allow effects
from one geographic region to be shrunk towards the effect
of neighboring geographic regions. Similar autoregressive
priors are also used in time-series data to allow the estimat-
ed effect at one point in time to be shrunk towards effects at
adjacent time points. Other researchers have attempted to
remain agnostic about which parameters should shrink to-
wards one another and allow the data to determine the
groupings of coefficients [3]. Careful consideration should
be given to the specification of the hierarchical structure as
results may be sensitive to these assumptions.

Bayesian Implementation

Bayesian methods are often more difficult to implement than
traditional frequentist methods, a fact that has hindered their
adoption in the epidemiologic literature [8]. Bayesian models
are often fit using Markov Chain Monte Carlo (MCMC)
techniques. While implementing these techniques has become
easier in recent years, they still require special attention to
technical details in which epidemiologists do not typically
receive training.

Data Augmentation

In response to technical difficulties in implementing MCMC
procedures, numerous authors have proposed data augmenta-
tion procedures; [8, 9, 23, 35–37, 38••] this approach appends
hypothetical data representing the prior distribution to the
actual data and relies on standard model fitting techniques to
estimate Bayesian posterior distributions. Greenland [9]
gives details on translating a prior distribution into a dataset
as well as methods for improving the accuracy of approx-
imations. Standard regression models can be run on the
combined data, with an indicator variable designating
whether the observations are derived from the actual or
prior data. The regression estimate and confidence intervals
for the exposure of interest can be treated as the mean and
credible intervals (the Bayesian analog of the confidence
interval) of the Bayesian posterior distribution.
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Software Packages for Markov Chain Monte Carlo

Data augmentation serves as an easy way to obtain an approx-
imation to the posterior distribution that is often sufficiently
accurate. There may be instances, however, when MCMC is
preferable because it provides the opportunity to estimate the
exact posterior distribution. Further, researchers often use
Bayesian methods to handle complex analytic problems; these
may be regression models with complicated forms, or situa-
tions in which a researcher would like to specify a non-
standard or even non-parametric prior. For example, a user
may desire to constrain parameters based on a priori knowl-
edge of their rank ordering [39], or use an inequality constraint
to adjust for RR estimates that exceed a probability of 1.0 [40].
In these settings, data augmentation may be difficult to imple-
ment, and a researcher may need to implement a MCMC
estimation procedure, which has been described in detail
elsewhere [41, 42]. MCMC is implemented with varying
degrees of difficulty and using different sampling procedures
in a few statistical software packages. We will discuss MCMC
as implemented in Statistical Analysis Software (SAS), JAGS,
WinBUGS, and STAN.

SAS

SAS provides two mechanisms for using MCMC. First, a user
can specify the BAYES statement within the packaged proce-
dures GENMOD, PHREG, and LIFEREG; this statement is a
single extra line of software code that invokes MCMC rather
than maximum likelihood estimation. This allows epidemiol-
ogists relatively easy implementation of Bayesian linear, lo-
gistic, Poisson, and Cox models. These procedures are a
convenient option for including a prior distribution for model
parameters of interest. Second, there is an independent
MCMC procedure, which allows the user greater flexibility
in specifying many prior distributions and likelihood func-
tions. A user can specify complex hierarchical regression
models, whereas the BAYES statement allows relatively sim-
ple prior specifications. When possible, SAS will use a con-
jugate sampling procedure, which is statistically efficient.
Otherwise, the most common sampling algorithms used by
SAS are the adaptive rejection Metropolis or random walk
Metropolis algorithms. Sullivan and Greenland provide an
introduction to Bayesian regression using SAS [38••].

JAGS and WinBUGS

Unlike SAS, JAGS andWinBUGS are purpose-built software
packages; they are designed to implement Bayesian models
with the Gibbs Sampler. JAGS is an acronym for Just Another
Gibbs Sampler [43] and WinBUGS stands for Bayesian

inference Using Gibbs Sampling [44]. WinBUGS is a general
Windows-based user interface program that allows specifying
models, sampling from the posterior distribution of parame-
ters of interest, diagnosing model convergence, and creating
graphical and analytic output. JAGS, which uses a similar
language for model specification as WinBUGS, allows the
user to specify a model and generate samples from the poste-
rior distribution; however, this is where the features of JAGS
end. Thus, an individual using JAGS should be familiar with
the R software package to analyze the output and conduct tests
for model convergence. Packages such as rjags and
mcmcplots are available and allow users to create graphics
and analyze output from JAGS; both WinBUGS and JAGS
can be invoked using R statistical software. Many textbooks
offer detailed descriptions for using WinBUGS [45, 46].

STAN

STAN is named after the co-inventor of the Monte Carlo
method, Stanislaw Ulam, and is unlike the SAS, JAGS, or
WinBUGS samplers [47]. STAN uses a Hamiltonian Monte
Carlo and No-U Turn sampling procedure, which its creators
chose because of its ability to handle problems with which
WinBUGS and JAGS may have trouble; namely, use of non-
conjugate priors and high posterior correlations. While the
language for STAN is similar to that of WinBUGS and JAGS,
it is not identical. As with JAGS, a user can specify and call a
STANmodel using an R package, namely rstan. Additionally,
the resulting output can be analyzed with the same packages
used to analyze the output from JAGS.

Discussion

Bayesian methods can provide researchers with gains in per-
formance of statistical estimation by incorporating prior infor-
mation. We have discussed a few of the common forms the
prior may take including subjective values for parameters of
interest, weakly informative default priors, and hierarchical
Bayesian priors. Examples of researchers successfully
implementing Bayesian methods to improve their analyses
were also provided.

We have two recommendations to further the use of Bayes-
ian methods in epidemiologic research. First, the lack of
articles in which the prior distributions are based on previous
research is notable. The vast majority of articles that employ
simple shrinkage techniques choose to shrink estimates to-
wards the null, rather than towards some substantively rea-
sonable location. Shrinkage towards the null offers researchers
the opportunity to justify their approachwith claims of it being
conservative. However, shrinkage towards locations based on
prior knowledge may lead to better estimators. Employing
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shrinkage towards substantively justified locations will re-
quire an extensive examination of the literature or consultation
with substantive experts. The strengths and limitations of
existing literature should be carefully considered and studies
that are not of sufficient quality should be excluded from
consideration for informing priors. If multiple studies are
available for inclusion in a prior distribution, meta-analyses
can be used to aggregate them.

Second, the data augmentation approach has seen relatively
littleuse in the literature despite having been introduced in
epidemiology in 2007 [9]. This approach is easy to implement
and brings Bayesian results within the grasp of any epidemi-
ologist who can run standard regression models. Data aug-
mentation techniques cleverly avoid the need for epidemiolo-
gists to learn specialized computing techniques such as
MCMC. While data augmentation may be difficult to extend
to more complicated hierarchical structures, its ease of imple-
mentation and transparency for simple shrinkage is laudable.
We encourage analysts to explore these techniques.

While we have restricted our focus to shrinkage techniques,
there is another common use of subjective Bayesian analysis:
when prior information, informed by previous studies or ex-
pert opinion, is used in bias analysis [48–51]. Adjustments for
possible biases in epidemiologic studies are dependent on bias
parameters, such as the sensitivity or specificity of classifica-
tion of the exposure. Informative values chosen for these
parameters would, ideally, be based on validation sub-
studies. However, lacking these they can be based on relevant
prior literature, such as previous validation studies that esti-
mated the sensitivity and specificity of the exposure measure-
ment. Distributions for these bias parameters represent the
uncertainty surrounding the bias parameter and as has been
noted, there is a correspondence between bias analysis proce-
dures and Bayesian procedures [48, 52]. In fact, the bias
parameter distribution is simply a Bayesian prior distribution.
However, much of the bias analysis literature has avoided the
Bayesian foundation of the procedure and focused on practical
implementation instead.

Conclusion

We have highlighted many situations in which incorporat-
ing even a small amount of prior information can result in
Bayesian estimators that have excellent frequentist proper-
ties. Furthermore, approximate Bayesian methods, ad-
vances in computational efficiency, and efforts to create
applicable software packages have made implementation
of Bayesian methods much more accessible for interested
researchers. As a result, we believe Bayesian methods
should be a vital component of every epidemiologist’s
toolkit and should be used with regularity.
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