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Background: Exposure to endocrine disruptors is unavoidable. 
Many such compounds are suspected to impact neurologic develop-
ment of children, but most studies conducted have considered effects 
of individual chemicals in isolation. Because exposures co-occur, it 
is important to consider their health impacts in a single regression 
framework.
Methods: We applied Bayesian statistical tools (including shared 
mean and mixture priors for 25 unique chemicals) to study inde-
pendent associations of endocrine disruptor biomarkers with autism 
spectrum disorder (ASD) (n = 491) and intellectual disability (n = 
155), compared with 373 general population controls, in the Early 
Markers for Autism study. We measured biomarkers in maternal 
serum collected and stored from midpregnancy and considered them 
individually or as a class (i.e., summed polychlorinated biphenyls). 
We adjusted all models for original matching factors (child sex and 
month and year of birth), maternal age, maternal race/ethnicity, 
parity, and maternal education at the time samples were collected. 
We estimated the change in the odds of ASD or intellectual disability 

per 1 SD increase in the z-score of measured biomarker concentra-
tion for each chemical.
Results: Odds of ASD and intellectual disability did not change with 
increasing concentration for any specific endocrine disruptor. The 
effect estimates for each chemical were centered on or near an odds 
ratio of 1.00 in both models where we applied a shared mean or a 
mixture prior.
Conclusion: Our mixtures analyses do not suggest an independent 
relationship with ASD or intellectual disability with any of the 25 
chemicals examined together in this mixtures analysis.

Keywords: Autism spectrum disorder; Bayesian methods; Complex 
mixtures; Endocrine disruptors

(Epidemiology 2019;30: 418–426)

Humans are regularly exposed to multiple chemicals in day-
to-day life. This reality has increased interest in research 

and methods that consider exposures as mixtures. The term 
complex mixture broadly refers to any group of exposures that 
co-occur in time or space or that may share common sources 
or biologic pathways; a prime example of this is potential en-
docrine disruptors. Because many of these chemicals can cross 
the placenta,1 exposures experienced by pregnant women are 
of particular concern. Studies examining these chemicals in 
groups (e.g., summed polychlorinated biphenyls [PCBs] and 
summed polybrominated diphenyl ethers [PBDEs]) or as indi-
vidual congeners (e.g., PCB 153 and PBDE 47) suggest that 
they may impact neurodevelopment.2–20 However, results of 
previous research have been inconsistent, suggesting associa-
tions, both positive and negative, of specific endocrine disrup-
tors and groups of endocrine disruptors with autism spectrum 
disorder (ASD)21,22 and neurodevelopment.23

With one exception that we are aware of,23 the associa-
tions of endocrine disruptor exposures to neurodevelopment 
and ASD have been studied as individual biomarker concen-
trations or as summed concentrations within chemical classes. 
This approach overlooks the complex correlations among 
these chemicals. Further, analyses that do not consider mul-
tiple exposures within a single regression framework may be 
subject to the multiple comparisons problem.24,25 Historically, 
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modeling of one exposure at a time has been favored because 
of limitations in statistical tools to study multiple agents that 
occur as a complex mixture. Given the hypothesis that some 
but perhaps not all endocrine disruptors may play an etiologic 
role in ASD and other neurodevelopmental disorders, it is im-
portant that we apply the most current statistical tools to best 
understand any potential relationships.

Bayesian methods are ideally suited to study the impact 
of multiple endocrine disruptors within a single regression 
model.24,26 Researchers include quantitative prior information, 
such as the belief that multiple exposures may have similar 
effects on a health outcome of interest. Priors may be in-
formed from research in many areas, including epidemiology 
and toxicology.27,28 Bayesian methods allow us to use a single 
regression model to gain insight into the potential influence of 
multiple, correlated exposures on health while circumventing 
the multiple comparisons problem.29

We applied a Bayesian approach to study the relation-
ship of multiple correlated endocrine disruptor biomarkers to 
ASD and intellectual disability in the Early Markers for Au-
tism (EMA) study. Our research question concerns whether or 
not there is evidence of independent associations of endocrine 
disruptors to ASD and intellectual disability, accounting for 
co-occurring exposures. These same chemicals were previ-
ously studied individually.21,22,30 We applied Bayesian priors, 
which assume that effects may be at least partially exchange-
able. Results are discussed in the broad context of evidence re-
garding the potential impact of endocrine disruptor exposure 
on neurodevelopment.

METHODS

Subjects
The EMA study is a population-based case–control study 

that was designed to characterize genetic factors and chemical 
and biologic biomarkers and their relationship to ASD risk.31 
Prenatal and neonatal blood samples were obtained from 
mother–child pairs as part of the study, which was approved 
by the institutional review boards (IRBs) of the State of Ca-
lifornia and Kaiser Permanente Northern California. The in-
volvement of the Centers for Disease Control and Prevention 
(CDC) laboratory did not constitute engagement in human 
subjects research and was thus exempt from IRB approval. 
Participant mothers were enrolled in California’s Expanded 
Alpha-fetoprotein Prenatal Screening Program between 2000 
and 2003 from Orange, San Diego, CA, and Imperial coun-
ties, and had given birth between January 2000 and June 2003 
in California. Participation in EMA required availability of 
both maternal prenatal and newborn screening blood samples.

The California Department of Developmental Services 
(DDS) provides resources and support to individuals of all 
ages with developmental disabilities including ASD and other 
pervasive developmental disorders, and intellectual disability, 
indicated by an IQ <70 based on standardized cognitive and 

functional tests. Information from DDS records was used to 
identify children with ASD and children with intellectual dis-
ability of unknown etiology (e.g., excluding certain chromo-
somal defects) who had maternal and newborn blood samples. 
General population controls were randomly sampled from 
birth records and matched to ASD (but not intellectual dis-
ability) cases on sex, and birth month and year. All children 
were between 4 and 9 years old at the time of case or control 
ascertainment.

Trained medical record abstractors conducted diag-
nostic verification of ASD and intellectual disability. Final 
case status was determined by expert clinical review of 
these records based on a published protocol.32 Classification 
of ASD was based on Diagnostic and Statistical Manual of 
Mental Disorders (fourth edition) criteria. Following expert 
review of records, we reclassified individuals originally iden-
tified as intellectually disabled from the DDS system who met 
ASD criteria as ASD cases. We further evaluated ASD cases 
for presence of co-occurring intellectual disability. Final case 
groups include ASD (with or without co-occurring intellec-
tual disability) and intellectual disability (in the absence of 
ASD).

Maternal Samples
Consent forms obtained from mothers before prenatal 

screening note that specimens could be used for research 
purposes on IRB approval. Maternal blood specimens were 
collected typically between 15 and 20 weeks of gestation 
(median: 16 weeks, range 7–25 weeks) in serum separator 
tubes by obstetrical care service providers and underwent al-
pha-fetoprotein testing within 7 days of collection at a central 
laboratory (median time = 3 days). Because of their resist-
ance to degradation, chemicals of interest for this work can 
be measured years after sample collection. After 1–2 days of 
refrigeration, leftover serum and cell pellet specimens were 
stored at −20°C.

Quantification of Endocrine-disrupting 
Chemical Biomarkers

Laboratory methods utilized for quantifying endocrine 
disruptor biomarkers in EMA maternal serum are described 
in previous publications.21,31 Briefly, 37 PCBs, nine organo-
chlorine pesticides (OCPs), eight perfluoroalkyl substance, 
nine PBDEs, and one polybrominated biphenyls (PBBs) were 
measured in maternal serum samples at the CDC.33,34 PCBs, 
OCPs, PBDEs, and PBBs were measured via gas chroma-
tography isotope dilution high-resolution mass spectrometry 
(Thermo Fisher Scientific, Bremen, Germany). Samples were 
processed in batches including unknowns (n = 24), method 
blanks (n = 3), and quality control (n = 3) samples.33,35 The 
limit of detection (LOD) was determined as the highest of (1) 
the lowest calibration point giving a signal exceeding a sig-
nal-to-noise level of 10:1 or (2) three times the standard de-
viation of method blanks measured in each batch of samples. 
The median background level if detected in blank samples 
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was subtracted before assessing whether or not the signal was 
above or below the limit of detection. The measured concen-
trations were expressed as picograms per gram of serum (pg/g) 
and nanograms per gram of serum lipid (ng/g lipid). The 
limit of detection was calculated for each individual sample 
and was dependent on the available volume of serum and the 
serum lipid concentration for expression of the lipid-adjusted 
LOD. The median volume of serum used was 0.6 g (range: 
0.6–1.2 g). A doubling of available serum would reduce the 
LOD by half. Total cholesterol and triglyceride concentrations 
were measured using an enzymatic reaction on a Roche ModP 
analyzer, and the total serum lipid concentration was calcu-
lated based on the equations presented in Phillips et al.36

We measured eight per- and polyflouroalkyl sub-
stances  (PFAS) using a modification of a published solid 
phase extraction–high performance liquid chromatography–
isotope dilution tandem mass spectrometry method34 (current 
acronyms followed by previously used acronyms as applies in 
parentheses): perfluorooctane sulfonamide (FOSA/PFOSA), 
2-(N-ethyl-perfluorooctane sulfonamido) acetate (Et-FOSAA/
Et-PFOSA-AcOH), 2-(N-methyl-perfluorooctane sulfon-
amido) acetate (Me-FOSAA/Me-PFOSA-AcOH), perfluoro-
hexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), 
perfluorooctanoate (PFOA), perfluorononanoate (PFNA), 
and perfluorodecanoate (PFDA/PFDeA). For PFAS, con-
centrations were given in ng/ml, and LODs were 0.08 ng/ml 
(PFNA), 0.1 ng/ml (PFOSA, Et-FOSAA, PFHxS, and PFOA), 
and 0.2 ng/ml (PFOS, Me-FOSAA, and PFDA).

Statistical Analyses
The ASD cases in the total study sample included all 

children who were classified as ASD following expert clinical 
review: those who were initially ascertained as having ASD 
(N = 413) and those initially ascertained as having intellectual 
disability but were then reclassified as having ASD (N = 132). 
The intellectual disability group includes children classified 
as having intellectual disability but not having ASD after 
expert clinical review (N = 181). We restricted our analytic 
sample to births for which measures of our primary exposures 
of interest, PCBs, PFASs, PBDEs, PBBs, and OCPs, were 
available from maternal prenatal samples. After exclusion of 
individuals with missing exposure information, our total an-
alytic sample included 491 ASD cases, 155 intellectual disa-
bility cases, and 373 general population controls.

Of the 64 biomarkers measured, we excluded from anal-
yses those for which >40% of participants had concentrations 
below the LOD; this was done in prior analyses of these data21 
and has been recommended in previous studies of these pol-
lutants.37,38 This approach left five PBDEs (PBDE 28, 47, 99, 
100, and 153), PBB153, 11 PCBs (PCB 28, 99, 118, 138/158, 
153, 170, 180, 187, 194, 196/203, and 199), two OCPs (p,p′-
dichlorodiphenyldichloroethylene (DDE), trans-nonachlor), 
and six PFASs (Et-FOSAA, Me-FOSAA, PFHxS, PFOS, 
PFOA, and PFNA), for a total of 25 biomarkers. For those 

individuals with a concentration below the LOD for any of the 
25 chemical biomarkers considered, we replaced values less 
than LOD with the LOD/√2, as suggested in prior work.21 We 
standardized all endocrine disruptors based on their z-score 
for primary analyses.

Our primary analysis applied a Bayesian approach to 
study the independent effects of all 25 chemicals within a 
single unconditional logistic regression model to evaluate the 
change in the odds of ASD per 1 SD increase in the z-score of 
measured concentrations for each of the 25 endocrine disrup-
tors. We applied a mixture before the 25 biomarkers using the 
stick-breaking procedure.39 Briefly, the mixture prior allows 
the estimated effect of each biomarker on ASD risk to arise 
from multiple distributions. In this case, we specified four 
possible distributions: (1) a positive association between en-
docrine disruptors and ASD (β1~N(0.2,1); (2) a negative asso-
ciation between endocrine disruptors and ASD (β2~N(−0.2,1), 
3); and (3) two zero-centered but uninformed normal distribu-
tions (β3,4~N(0,10)). This approach allows us to evaluate the 
independent effect of each biomarker on ASD risk, but allows 
for the possibility that these effects are similar. We applied 
a more commonly used shared mean prior (often referred to 
as empirical Bayes), which assumes, a priori, that all the bio-
markers may share a single, common effect.24,40 Odds ratios 
and 95% highest posterior density intervals are reported; we 
note that the highest posterior density interval is the narrowest 
part of the posterior density within which some percentage 
of the distribution lies (here, 95%). We implemented models 
using the Just Another Gibbs Sampler software (v4.2.0) via 
the R software package (v3.3.2). We evaluated Gelman–Rubin 
diagnostics for three different chains to determine model con-
vergence.41 Models were adjusted for matching factors (child’s 
sex, and month and year of birth), maternal age (continuous), 
maternal education (less than high school [reference], high 
school, some college/college degree, and postgraduate), ma-
ternal race/ethnicity (non-Hispanic white [reference], Asian, 
Hispanic, and black/Pacific Islander/other), and parity (1 live 
birth child [reference] vs. >1 live birth), all obtained from the 
birth certificate. We also considered inclusion of maternal 
weight at sample collection as a proxy for body mass index, 
which was not recorded in the EMA cohort.

In addition to the analyses described above, we con-
ducted secondary analyses of associations with ASD and intel-
lectual disability. We examined alternate parameterizations of 
the biomarkers. For each of the 25 biomarkers, quartiles based 
on the distribution of each compound were created to further 
examine the possibility of associations changing with increas-
ing concentrations of a given biomarker. A Bayesian shared 
mean prior is applied to each quartile so that the effects of bio-
markers are treated as partially exchangeable within the same 
group. For example, a shared mean is applied to the second 
quartile of all 25 biomarker concentrations but not to third or 
fourth quartiles for which a unique prior is applied. We also 
conducted analyses including only the subgroup of ASD cases 
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who were ascertained from California DDS as ASD cases be-
fore expert clinical review. To examine potential differences 
by comorbid intellectual disability, we also conducted strati-
fied analyses, examining associations in those diagnosed with 
both ASD and intellectual disability and in those diagnosed 
with ASD but not intellectual disability. Finally, we conducted 
analyses stratified by sex, where differences were qualitatively 
assessed based on overlap of the posterior distribution.

Statistical software code to recreate these analyses 
is available as an eSupplement; http://links.lww.com/EDE/
B468 and from the corresponding authors’ personal web page 
(http://ghassanbhamra-phd.org/); however, permission to ob-
tain data necessary to recreate these analyses is required (in-
terested parties should contact Lisa Croen).

RESULTS
Table  1 summarizes the distributions of key covari-

ates utilized in these and prior analyses of the association 
between endocrine disruptor biomarkers and ASD and intel-
lectual disability in the EMA study. We note that results of 
primary analyses described below were not impacted by the 
inclusion of maternal weight, so we excluded this confounder 
from final models. Mothers were of a similar age in ASD and 
intellectual disability case and general population control 
groups. Mothers of ASD cases tended to have completed a 
higher level of education (59% with some college or higher) 
than controls (47% with some college or higher), whereas 
mothers of intellectual disability cases were less educated 
than control mothers (29% with some college or higher). The 
distribution of maternal race/ethnicity was largely similar for 

ASD cases and controls. This was not so for intellectual disa-
bility cases, whose mothers were disproportionately Hispanic 
(70%). A lower percentage of intellectual disability cases were 
male at birth (58%), compared with both ASD cases (82%) 
and general population controls (83%) because of matching 
procedures. Finally, mothers of controls (62%) and intellec-
tual disability cases (66%) were more likely to have had prior 
births than mothers of ASD cases (55%).

The distribution of serum biomarker concentrations was 
highly variable (Table 2). The highest concentrations were for 
p,p′-DDE, as expected. In addition, PBDE47, PCB28, and 
PFOS had the highest concentrations within their respec-
tive chemical class; this was true irrespective of case status. 
Figure illustrates the correlations across the 25 target bio-
markers. Biomarkers within a chemical class were highly 
correlated and mostly did not correlate with biomarkers in 
other chemical classes. PBDEs and OCP biomarkers were not 
strongly correlated within their chemical class as compared 
with PFASs and PCBs, the latter two being strongly correlated 
within chemical class.

Table 3 summarizes results from primary analyses of all 
ASD cases applying a mixture and shared mean prior to the 
25 biomarkers under study. There was no evidence of any in-
dividual biomarker being associated with ASD when applying 
a mixture prior; all estimated effects were centered at or near 
an odds ratio (OR) of 1.00. In analyses utilizing a shared mean 
instead of a mixture prior, the estimated associations of all 25 
biomarkers were close to 1.00.

As with primary analyses, none of the secondary analyses 
suggested an association between any individual biomarker and 
ASD or intellectual disability. When examining concentration 
quartiles for all 25 endocrine-disrupting chemical (EDC) bio-
markers, we did not observe a monotonic increase or decrease in 
the estimated association of biomarkers with either ASD or in-
tellectual disability, nor was there any suggestion of an increas-
ing association among a higher subset of quartiles (such as 
the fourth vs. the first quartile; eTable 1 [http://links.lww.com/
EDE/B468]). All 95% credible intervals greatly overlapped and 
included an OR of 1.00. When we estimated sex-specific effects 
with a mixture prior applied to individual biomarkers, there was 
no suggestion of differences by sex for any of the 25 biomarkers 
considered; this was true of ASD- and intellectual disability-
specific analyses such as those represented in Table 3 (eTable 2; 
http://links.lww.com/EDE/B468). Results of analyses for con-
tinuous concentration, concentration quartiles, and sex-specific 
continuous concentration effects limited to ASD with comorbid 
intellectual disability were comparable (in most cases nearly 
identical) to those where ASD or intellectual disability were in-
dependent outcomes of interest (results not shown).

DISCUSSION
Our analysis considered the association of 25 EDCs 

in a single regression model in a Bayesian framework, an 
approach that circumvents multiple comparisons problems29 

TABLE 1.  Demographic Characteristics of the EMA Study by 
Cases–ASD, ID, and GP Control Status

ASD Cases  
(N = 545)

ID Cases  
(N = 181)

GP Controls  
(N = 418)

Maternal age, mean (SD) 30 (5.6) 27 (6.3) 29 (5.4)

Maternal education, n (%)    

 ��� Less than high school 97 (18) 76 (42) 102 (24)

 ��� High school 126 (23) 52 (29) 117 (28)

 ��� Some college or college 

degree

222 (41) 42 (23) 143 (34)

 ��� Postgraduate education 100 (18) 11 (6) 56 (13)

Maternal race and  

ethnicity, n (%)

   

 ��� Non-Hispanic white 192 (35) 32 (18) 138 (33)

 ��� Asian 82 (15) 9 (5) 45 (11)

 ��� Black, Pacific Islander, and 

other

48 (9) 13 (7) 35 (8)

 ��� Hispanic 218 (40) 126 (70) 197 (47)

 ��� Missing 5 (<1) 1 (<1) 3 (<1)

Multiparous, n (%) 298 (55) 119 (66) 259 (62)

Male birth sex, n (%) 446 (82) 104 (58) 345 (83)

GP indicates general population; ID, intellectual disability.

http://links.lww.com/EDE/B468
http://links.lww.com/EDE/B468
http://ghassanbhamra-phd.org/
http://links.lww.com/EDE/B468
http://links.lww.com/EDE/B468
http://links.lww.com/EDE/B468
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TABLE 2.  Distribution of EDC Concentrations (ng/g Lipid)a in Maternal Serum, EMA Study

Compound

ASD Cases (N = 545) ID Cases (N = 181) GP Controls (N = 418)

Mean Median SD Mean Median SD Mean Median SD

PBB153 2.06 1.20 4.80 1.61 0.85 2.13 2.06 1.10 4.57

PBDE28 1.20 0.78 1.48 1.04 0.80 0.83 1.38 0.85 2.06

PBDE47 28.0 13.8 54.6 28.0 14.7 51.6 35.1 16.9 80.0

PBDE99 9.61 4.00 26.2 9.42 4.65 20.5 12.6 4.90 33.6

PBDE100 7.17 3.20 13.6 5.93 3.80 8.18 9.06 3.90 21.4

PBDE153 7.85 3.50 12.6 6.26 3.60 8.11 10.7 4.20 22.4

PCB28 31.5 15.7 39.9 36.0 17.10 45.9 27.3 14.2 35.1

PCB99 1.91 1.50 1.52 1.40 1.17 0.72 1.72 1.30 1.43

PCB118 3.24 2.50 2.84 2.29 1.87 1.52 2.91 2.30 2.46

PCB138_158 8.70 6.65 7.22 5.95 4.45 4.44 7.39 5.50 7.22

PCB153 11.6 9.20 9.38 7.41 5.30 6.00 9.88 7.40 9.78

PCB170 4.09 3.20 3.30 2.75 1.90 2.31 3.54 2.60 3.57

PCB180 10.2 8.00 8.48 6.49 4.40 5.86 8.55 6.10 8.59

PCB187 3.42 2.30 3.51 2.10 1.40 2.03 2.96 1.80 3.92

PCB194 2.48 1.80 2.18 1.60 1.06 1.41 2.14 1.50 2.12

PCB196_203 2.72 2.00 2.35 1.71 1.20 1.42 2.39 1.60 2.43

PCB199 2.64 1.60 2.88 1.51 0.92 1.53 2.25 1.30 2.93

p,p’-DDE 521 207 1190 675 244 1170 674 215 1360

Trans-Nonachlor 6.36 4.90 6.22 5.70 4.45 5.20 5.78 4.70 4.50

Et-FOSAA 0.94 0.70 0.89 1.09 0.80 1.18 1.00 0.70 0.99

Me-FOSAA 1.57 1.20 1.58 1.45 1.10 1.39 1.46 1.10 1.08

PFHxS 2.09 1.30 3.51 2.07 1.30 2.62 1.85 1.30 2.27

PFNA 0.69 0.60 0.38 0.55 0.50 0.32 0.67 0.60 0.40

PFOA 4.25 3.70 2.75 3.92 3.50 2.84 4.19 3.70 2.24

PFOS 20.0 18.1 10.4 18.5 16.9 9.07 20.6 18.3 11.6

Values (and numbers of cases and controls) are representative of the full study sample.
aConcentrations are lipid adjusted, with the exception of PFAS (Et-FOSAA, Me-FOSAA, PFHxS, PFNA, PFOA, PFOS), which are presented in ng/ml.

FIGURE.  Correlation among endocrine dis-
ruptor biomarkers. Please refer to the main 
text for descriptions of specific chemicals.
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and overcomes analytic challenges of studying multiple cor-
related exposures together that hamper traditional statistical 
tools.24,26 Overall, our analyses do not suggest an association 
between any specific endocrine disruptor biomarkers quanti-
fied in maternal prenatal serum and the odds of ASD or in-
tellectual disability. Previous analyses have suggested that 
some of the biomarkers included in the mixture studied here 
may be related to ASD within the EMA study.21 These pre-
vious analyses utilized single-component regression models 
to study each biomarker in isolation and summed within their 
chemical class.21,22,30 Our Bayesian approach and resultant 
findings should be balanced against potential limitations of 
the present analysis and the biologic rationale that justifies this 
line of inquiry.

Bayesian methods utilize quantitative priors to com-
bine what is assumed or known about effects of exposures 
with what can be estimated from the data and models used 
for a given analysis. As demonstrated, researchers can ac-
commodate analyses of multiple, correlated exposure 

biomarkers within a single regression model.24,26 Also, the use 
of a Bayesian approach circumvents the multiple comparisons 
problem that arises when studying exposure biomarkers one 
by one and ignoring their correlated nature.29 These are im-
portant benefits for the study of environmental exposures that 
tend to occur as complex mixtures. We note that analyses here 
have focused on estimating independent effects of chemicals, 
rather than attempting to estimate a combined mixture effect, 
for which other methods are available.42

Endocrine disruptors are a quintessential example of 
exposures that occur as a complex mixture. One study of 
maternal serum samples taken during the fetal growth pe-
riod reported at least 25 EDC biomarkers detectable in each 
sample.43 The EMA study measured 64 biomarkers in ma-
ternal serum collected in midpregnancy, 25 of which were 
considered here. Figure clearly shows that, within their respec-
tive chemical classes, many of the EDC biomarkers detected 
here are moderately to highly correlated in both positive and 
negative directions. Nonetheless, most previous analyses of 

TABLE 3.  Results of Primary Analyses Comparing ASD Cases (N = 491) and Intellectual Disability Cases (N = 155) with General 
Population Controls (N = 373)

Chemical

ASD Intellectual Disability

Mixture Prior
OR (95% HPD)

Shared Mean
OR (95% HPD)

Mixture Prior
OR (95% HPD)

Shared Mean
OR (95% HPD)

PBB153 0.99 (0.96–1.02) 0.99 (0.92–1.05) 0.99 (0.92–1.06) 0.98 (0.83–1.15)

PBDE28 0.99 (0.96–1.03) 0.99 (0.92–1.06) 0.98 (0.89–1.06) 0.96 (0.76–1.14)

PBDE47 0.99 (0.95–1.03) 0.99 (0.91–1.06) 0.98 (0.86–1.07) 0.96 (0.75–1.15)

PBDE99 0.99 (0.96–1.03) 0.99 (0.92–1.06) 0.98 (0.90–1.06) 0.98 (0.80–1.19)

PBDE100 0.99 (0.96–1.03) 0.99 (0.92–1.06) 0.98 (0.83–1.08) 0.96 (0.75–1.17)

PBDE153 0.99 (0.87–1.01) 0.98 (0.88–1.03) 0.98 (0.85–1.06) 0.95 (0.75–1.11)

PCB28 1.00 (0.96–1.04) 1.00 (0.95–1.10) 0.99 (0.92–1.06) 1.00 (0.87–1.20)

PCB99 0.99 (0.96–1.03) 0.99 (0.93–1.07) 0.98 (0.91–1.06) 0.97 (0.78–1.17)

PCB118 0.99 (0.96–1.03) 0.99 (0.93–1.07) 0.98 (0.90–1.06) 0.97 (0.75–1.15)

PCB138_158 0.99 (0.96–1.03) 0.99 (0.93–1.08) 0.99 (0.91–1.10) 1.01 (0.84–1.31)

PCB153 0.99 (0.96–1.03) 0.99 (0.92–1.07) 0.99 (0.91–1.06) 0.98 (0.78–1.21)

PCB170 0.99 (0.96–1.04) 1.00 (0.93–1.08) 0.99 (0.91–1.08) 1.00 (0.82–1.27)

PCB180 0.99 (0.96–1.04) 1.00 (0.93–1.09) 0.99 (0.91–1.08) 0.99 (0.80–1.26)

PCB187 0.99 (0.96–1.03) 0.99 (0.92–1.07) 0.99 (0.91–1.11) 1.00 (0.83–1.31)

PCB194 0.99 (0.96–1.04) 0.99 (0.93–1.08) 0.99 (0.91–1.08) 0.99 (0.81–1.26)

PCB196_203 0.99 (0.96–1.03) 0.99 (0.92–1.07) 0.99 (0.90–1.06) 0.98 (0.76–1.19)

PCB199 0.99 (0.96–1.03) 0.99 (0.93–1.08) 0.99 (0.90–1.06) 0.98 (0.78–1.20)

p,p’-DDE 0.99 (0.92–1.02) 0.98 (0.89–1.03) 0.98 (0.91–1.05) 0.96 (0.79–1.09)

Trans-Nonachlor 0.99 (0.96–1.03) 1.00 (0.94–1.07) 0.99 (0.93–1.25) 1.06 (0.92–1.38)

Et-FOSAA 0.99 (0.95–1.03) 0.99 (0.91–1.05) 0.99 (0.92–1.08) 1.02 (0.90–1.22)

Me-FOSAA 0.99 (0.96–1.04) 1.00 (0.95–1.09) 0.99 (0.92–1.08) 1.01 (0.88–1.24)

PFHxS 1.00 (0.96–1.05) 1.00 (0.95–1.10) 0.99 (0.92–1.21) 1.05 (0.91–1.35)

PFNA 0.99 (0.94–1.03) 0.98 (0.90–1.04) 0.98 (0.90–1.05) 0.96 (0.76–1.11)

PFOA 0.99 (0.96–1.03) 0.99 (0.93–1.06) 0.99 (0.92–1.06) 0.98 (0.83–1.16)

PFOS 0.99 (0.93–1.02) 0.98 (0.89–1.04) 0.99 (0.91–1.05) 0.98 (0.80–1.15)

ORs represent the change in odds per 1 SD change in z-score standardized concentration of a chemical biomarker. Numbers of cases and controls represent those with complete 
exposure information. All ORs are adjusted for maternal age, education, race, and sex of the child at birth.

HPD indicates highest posterior density.



Copyright © 2019 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Hamra et al.	 Epidemiology  •  Volume 30, Number 3, May 2019

424  |  www.epidem.com	 © 2019 Wolters Kluwer Health, Inc. All rights reserved.

the relationship of endocrine disruptor exposures to ASD and 
neurodevelopmental delay have considered effects of each bi-
omarker in isolation or in summed groups. Prior studies have 
produced inconsistent findings regarding the association be-
tween any specific biomarker or summed chemical group and 
ASD21,44 or other neurodevelopmental disorders.45–47 Below, 
we highlight studies that have considered specific endocrine 
disruptors and not just summed groups.

In previous EMA analyses assessing individual and 
groups of endocrine disruptors,21,22,30 the authors noted 
increases in the odds of ASD and intellectual disabilities as-
sociated with the highest quartile concentrations of PCB 
138/158, 153, 170, and 180 (among the PCBs examined). 
Prior EMA work also observed decreases in odds of ASD 
and intellectual disabilities in male offspring for those with 
the highest maternal prenatal concentrations of PBDE 153 
and the sum of six PBDEs, as well as different directions in 
effect for most PBDEs examined for male versus female off-
spring, which may suggest sexual dimorphism. EMA analyses 
of PFASs suggested associations below an OR of 1.00. There 
were modest differences in parameterization of exposures and 
covariates between prior and current analyses, which are un-
likely to explain differences in results. In fact, it is not un-
expected that the results here differ from prior analyses by 
our group. It has been noted previously that suggestions of 
associations between subsets of correlated exposures can be 
expected even in the case where there are no true associations. 
This is the problem of multiple comparisons, noted above.48 
The presence of associations centered at or near an OR of 1.00 
for a subset of EDCs present in the model can cause attenua-
tion of effects overall. This is characteristic of the shared mean 
prior, but only in the case where the data and model are more 
supportive of exposure effects overlapping; this is, in fact, the 
case for the previously reported PCB results in EMA, as in-
dicated by overlap of the confidence intervals for individual 
congeners in those analyses. The mixture prior allows effects 
of EDCs to differ more easily than the shared mean. Because 
results based on using either prior remained at or near an OR 
of 1.00, it may be that prior findings of positive or negative 
associations for individual chemicals resulted from conduct-
ing multiple comparisons on sparse data. Sparsity results from 
small sample sizes and correlated data, among other reasons.49

An analysis of the Health Outcomes and Measures of 
the Environment (HOME) prospective birth cohort of Cincin-
nati utilized Bayesian methods similar to those used here to 
study the relationship between 1 SD increases in 52 EDC bio-
markers and neurodevelopmental delay.23 The authors found 
a mix of associations across the 52 biomarkers. Our analyses 
included some of the same biomarkers quantified at the same 
laboratory, but we did not find supporting evidence of an as-
sociation with diagnosed ASD or intellectual disabilities. In 
addition to the HOME and prior EMA analyses, a Danish reg-
istry-based study of PFAS found no associations between any 
specific compounds and ASD diagnosis.50 Notably, HOME 

and the national health and nutrition examination survey 
showed similar patterns and levels of exposure to endocrine 
disruptors as the EMA study, with the exception of PCB 28 
which was more prevalent in the EMA cohort.23

Most other prior work has examined summed chemical 
groups or individual congeners using more traditional statis-
tical approaches. A prior study of summed PCBs suggested 
a positive association with ASD.44 Other studies have found 
evidence of a positive association between specific OCPs and 
ASD51 or other neurodevelopmental deficits.52 A recent sys-
tematic review of the literature on PFAS found mixed results: 
some analyses suggested positive and negative associations of 
various PFAS with ADHD and neurologic deficit, but most 
results were consistent with no effects of exposure.54 In con-
trast to most previous literature examining these endocrine 
disruptors, our work found only ORs at or near 1.00.

The biologic rationale supporting a role for endocrine 
disruptors in adverse neurodevelopmental outcomes is sub-
stantial; the US Environmental Protection Agency recognized 
their importance as early as 1996.55 In laboratory studies, 
impacts of endocrine disruptors on normal hormone func-
tion have been observed in the nanomolar range; this range 
is consistent with exposures experienced by humans.56 En-
docrine disruptors may affect neurodevelopment via many 
mechanistic pathways20 to impact fetal brain development.57,58 
Notably, gestation is a period of elevated neurologic suscepti-
bility for the fetus.59–61 Despite a strong biologic rationale for 
a causal relationship, we did not obtain supporting evidence of 
an association between specific endocrine disruptors biomark-
ers with ASD or intellectual disability.

Strengths of this analysis include the following: assess-
ment of exposures in prospectively collected biologic samples 
during a critical period of neurodevelopment, relatively large 
sample size, the use of statistical methods to handle a large 
number of correlated biomarkers and circumvent the multiple 
comparisons problem, and diagnostic outcomes confirmed 
by expert clinician review. However, we must acknowledge 
some potential limitations. First, there is evidence to suggest 
that time windows of exposure are important to ASD etiology; 
notable among these are studies suggesting trimester-specific 
associations.62,63 Measurements from second trimester sam-
ples may differ from other etiologically relevant windows 
during pregnancy or early postnatal life; however, most of the 
biomarkers examined here are persistent chemicals, and all 
have half-lives that would extend through pregnancy, mean-
ing that biomarker concentrations measured in one trimester 
would correlate highly with and be representative of other 
trimesters. Second, there is always the possibility of residual 
confounding. For example, we did not have information re-
garding prepregnancy body mass index, which is a suspected 
confounder of the relationship between lipophilic endocrine 
disruptors and ASD outcomes; however, we considered a 
range of factors in adjusted analyses, including maternal 
weight at sample collection, which can be considered a proxy 
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for BMI. Third, we were limited by analytic sensitivity (i.e., 
LODs) in our ability to examine a comprehensive set of poten-
tial endocrine disruptors. As noted, we only considered 25 of 
64 measured biomarkers. If biomarkers of particularly harm-
ful chemicals did not meet the detection frequency inclusion 
criteria, we would miss their impact on ASD and intellectual 
disabilities in this analysis. We also did not include other po-
tentially neurodevelopmentally relevant chemical exposures, 
such as air pollutants, heavy metals, or phthalates;55,62 thus, 
our mixtures analysis is not fully comprehensive. Finally, 
while Bayesian methods are flexible, results may be sensitive 
to sparse data constraints and the selection of the prior. It is 
more difficult to detect true effects when the sample size is 
relatively low and there are a high number of correlated expo-
sures, which result in sparse data challenges.49 However, our 
approach allows the information in the data and model to do 
the bulk of the work by specifying relatively uninformative 
priors that do not inform the direction or magnitude of the 
estimated effects.

We previously noted the strength of our Bayesian mix-
ture model.26 Although we consider biomarker effects as in-
dependent, they may be quantitatively similar, a prior belief 
we leverage in the Bayesian framework. Mixture priors allow 
shrinkage of effects toward multiple possible distributions. 
As an example, if a majority of biomarkers does not have an 
estimable effect and a minority has independent positive or 
negative effects, then the mixture prior approach allows sep-
aration of these effects. There may be concern that exposures 
with negative correlations and corresponding opposite effects 
on an outcome will cancel out and shrink toward an estimate 
of no effect. In fact, the model allows for effects, even those 
with opposing directions, to be identified so long as there are 
sufficient data to do so. In our case, all the results were still 
centered on an OR of 1.00.

In summary, using Bayesian analysis, we did not find 
evidence of an association between ASD or intellectual dis-
ability and 25 individual endocrine disruptor biomarkers. 
Our results differ from evidence of associations between in-
dividual endocrine disruptors and neurodevelopmental out-
comes obtained from toxicology research56 and preliminary 
evidence from prior ASD and neurodevelopmental epidemio-
logic studies.21,23,44,52 Thus, continued exploration of the po-
tential impact of endocrine disruptors, considering combined 
effects, in association with ASD is warranted.
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