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Abstract: Model selection is an integral, yet contentious, component of epidemiologic 

research. Unfortunately, there remains no consensus on how to identify a single, best 

model among multiple candidate models. Researchers may be prone to selecting the model 

that best supports their a priori, preferred result; a phenomenon referred to as “wish bias”. 

Directed acyclic graphs (DAGs), based on background causal and substantive knowledge, are a 

useful tool for specifying a subset of adjustment variables to obtain a causal effect estimate.  

In many cases, however, a DAG will support multiple, sufficient or minimally-sufficient 

adjustment sets. Even though all of these may theoretically produce unbiased effect 

estimates they may, in practice, yield somewhat distinct values, and the need to select 

between these models once again makes the research enterprise vulnerable to wish bias.  

In this work, we suggest combining adjustment sets with model averaging techniques to 

obtain causal estimates based on multiple, theoretically-unbiased models. We use three 

techniques for averaging the results among multiple candidate models: information criteria 

weighting, inverse variance weighting, and bootstrapping. We illustrate these approaches 

with an example from the Pregnancy, Infection, and Nutrition (PIN) study. We show that 

each averaging technique returns similar, model averaged causal estimates. An a priori 
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strategy of model averaging provides a means of integrating uncertainty in selection among 

candidate, causal models, while also avoiding the temptation to report the most attractive 

estimate from a suite of equally valid alternatives. 

Keywords: model averaging; causal diagrams; directed acyclic graphs; wish bias 

 

1. Introduction 

Model selection is an inherent part of epidemiologic research [1], the optimal procedure for which 

is still debated. There is concern that investigators tend to select and report results of models that 

support their a priori beliefs about the association between the exposure and disease of interest, which 

is referred to as “wish bias” or “white hat bias” [2–4]. A growing body of research supports directed 

acyclic graphs (DAGs) as the first, and sometimes last, step in etiologic disease modeling [5,6]. DAGs are 

specified before data analysis and, thus, aid investigators in explicating their a priori beliefs about causal 

relations among variables before seeing the results of data analysis. Unfortunately, a correctly-specified 

DAG is not necessarily limited to one unique adjustment set; in fact, a single DAG may support many, 

theoretically unbiased adjustment sets. Further, many equally defensible models may lead to different 

conclusions regarding the research question of interest [7]. Typically, a researcher will select one 

among multiple adjustment sets for risk modeling when reporting results. Thus, while DAG analysis is 

generally an improvement over alternative approaches to model selection, most adopters must still 

restrict their analysis to the selection of a single regression model. 

We propose the use of model averaging as a tool to account more honestly for uncertainty between 

apparently valid causal models [8]. We will first provide a brief rationale for the use of model 

averaging; then, we will illustrate its use with an empirical example where a DAG was used for 

variable selection, but where there were multiple, equally valid adjustment sets available. We will 

show three simple approaches to combine the results of multiple adjustment sets; information criteria 

weighting [9], inverse variance weighting, and bootstrapping. The arguments for utilizing directed 

acyclic graphs (DAGs) are widely available [5,6,10,11], so we will not repeat them here. 

1.1. Uncertainty in Causal Modeling 

Specification of a DAG is an important step in identifying valid causal models. Importantly, DAGs 

are specified before data analysis and provide a visual summary of the investigators’ beliefs about the 

relationships between variables of interest. This is based on a priori knowledge obtained from previous 

research or other relevant literature. Some researchers recommend specifying and presenting DAGs for 

all analyses so that readers understand the assumptions made by the authors before undertaking data 

analysis [12]. 

Suppose we are interested in the relationship between some exposure (E) and disease (D) for which 

we have developed a DAG to characterize our subject matter knowledge about potential confounders. 

We will assume that there are no important effect measure modifiers of this relationship, and that the 

DAG is a complete and accurate reflection of the causal relations in the target population. A sufficient 
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adjustment set can be described as a subset of variables, adjustment for which will remove 

confounding of the E-D relationship. Within a DAG, one may identify sufficient adjustment sets which 

fully adjust for confounding, but from which no element may be removed without their becoming 

insufficient [5]. Figure 1 provides an illustration of a relatively simple DAG for the E-D relationship, 

confounded by variables A and B. In this simple scenario, the researcher has a choice between three 

adjustment sets [7]: [A,B], [A], or [B]; all three are sufficient, and the latter two are minimally 

sufficient, for estimating the total effect of E to D. Implicit in the identification of sufficient adjustment 

sets is the observation from the DAG that each will provide an equivalent amount of control for 

confounding. Thus, adjustment for any of the three sets identified from Figure 1 should produce equal 

point estimates of the E-D relationship. Note that the variance will likely differ across these three 

adjustment sets and that [B] would be expected to be the most efficient estimator [13]. In practice,  

the equivalence of the three adjustment sets identified from Figure 1 relies on many assumptions,  

the most well-known of which are no residual confounding, selection, missing data, or misclassification 

biases; also necessary are assumptions of positivity [14], consistency [15], and no interference [16]. 

 

Figure 1. Simple directed acyclic graph. 

Outside of simulations, it is unlikely that all sufficient adjustment sets drawn from a DAG are 

equally unbiased. In some cases, knowledge regarding data quality or the susceptibility of variables to 

bias can guide the selection of a sufficient adjustment set. In the case of Figure 1, for example, 

elimination of A or B, but not both, will leave one sufficient adjustment set [17]. More often, DAGs 

contain many covariates with complex relationships. Even in the case that knowledge of bias in the 

measurement of particular variables aids in exclusion of sufficient sets from further consideration, it is 

not atypical to be left with a choice of two or more adjustment sets that appear equally valid, but result 

in different estimates of the E-D relationship of interest. 

1.2. Averaging Models to Avoid Investigator Bias 

Wish (or white hat) bias occurs when an investigator is inclined to report the results of models that 

support an a priori belief about the results s/he believes to be true. The motivation for this may be 

financial, but may also result from the belief that certain results best serve public health goals [4].  

Even when a DAG is used, model results may differ in their statistical support for an exposure disease 

relationship or a priori investigator hypothesis, leaving room for wish bias to occur. 

Rather than selecting a single regression model, a researcher can instead average over multiple 

candidate models. This circumvents the need for an investigator to choose a single model as the best 

for characterizing the relationship between the exposure and outcome of interest. By restricting 

candidate models to those supported by a DAG, we avoid consideration of models that may induce 

bias in the estimation of the E-D causal relationship. Examples of this bias include over-adjustment for 

covariates [13], or confounding of the disease risk estimates by inducing collider-stratification bias [18]. 
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2. Methods 

2.1. Example from the PIN Study 

We consider a secondary analysis of the association between pre-pregnancy BMI (exposure) and 

cesarean delivery (outcome) among nulliparous women with a term pregnancy in the Pregnancy, Infection, 

and Nutrition (PIN) study [19]. The details of this study have been documented previously [20]; thus, we 

provide only a brief summary here. After consideration of inclusion and exclusion criteria, the final 

study population consisted of 612 women; among them, 297, 115, and 200 were classified as normal 

weight, overweight, and obese, respectively. Of the total population, 141 women had a cesarean 

delivery and the remaining 471 women experienced a vaginal birth after a trial of labor. 

The authors of the original article provided a DAG summarizing the potential confounders of 

interest in their analyses. A group of maternal characteristics were placed within a single node of the 

DAG; this provided a streamlined presentation, but did not allow visualization of the relationships of 

each these variables to others, and each other. To facilitate determination of sufficient adjustment sets, 

we disaggregated these variables so each has its own node, and we added arrows for the relationships 

of these variables to others in the DAG. Further, to aid in visualization, we remove variables that were 

in the original DAG but would clearly not be considered in any minimally sufficient adjustment set.  

Our modified DAG is presented in Figure 2. 

 

Figure 2. Directed Acyclic graph to obtain an unbiased effect of pre-pregnancy weight on 

cesarean delivery; adapted from Vahratian et al. (2005). Sufficient sets from this DAG are 

determined using DAGGITY software. 
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Of the variables included in the modified DAG, those considered a necessary element of at least one 

minimally-sufficient adjustment set included: chronic hypertension (no = 0, yes = 1), gestational 

weight gain (continuous kilograms), age (continuous years), height (continuous inches), race (white = 0, 

black = 1, other = 2), education (<12 years = 0, 12 years = 1, >12 years = 2), and pre-eclampsia/eclampsia 

(no = 0, yes = 1). Finally, the variables, including exposure and outcome, were treated as they were in 

the original analyses [20]; that is, we did not change or apply categorization to continuous variables or 

previously-determined categories for any variables of interest. 

2.2. Three Approaches for Model Averaging 

The goal of averaging is to base inference on the evidence from multiple models, rather than a 

single, selected regression model. Many authors have provided proof of principle and simulation 

evidence to support and explain the methods by which results from distinct statistical models can be 

averaged and the benefits of model averaging [7,9,21,22]; Here, we implemented three techniques for 

model averaging. First, we utilized the method developed and described by Burnham and Anderson using 

information criteria [9]. Second, we calculated the inverse variance weighted average of the candidate 

models [23,24]. Finally, we conducted a simple bootstrapping approach for model averaging [25]. 

Information criteria, usually Akaike’s (AIC) or Bayesian (BIC), are used to determine the support 

for any individual model in a set of models. Weighted averaging of the exposure parameter of interest 

with AIC requires models to be drawn from the same dataset and, thus, have the same number of 

observations. When we further restricted our analyses to women with complete information on all 

relevant covariates, the population includes 517 women; 257, 102, and 158 were normal weight, 

overweight, and obese, respectively. Among this restricted group, 120 women had a cesarean delivery 

and the remaining 397 women experienced a vaginal birth. 

We also present inverse variance weighted averages and a bootstrapping approach for model 

averaging. Both approaches allow calculation of confidence intervals for the averaged estimate. Using 

these approaches, the number of observations is not restricted to complete information, as needed for 

AIC weighting. The inverse variance weighted average approach weighs each model’s parameter 

estimate by the inverse of the variance of the causal effect estimate. Then, the standard error is 

weighted by the number of observations with complete information; i.e., records with missing 

information for a covariate are excluded. For the bootstrap approach, we sample (with replacement) 

1000 times. Next, each model is fit to each bootstrap replication. We combine the bootstrap parameter 

estimates so that the total number of values of each parameter is the number of bootstrap samples 

multiplied by the number of models. The mean, median, 2.5th, and 97.5th percentiles of the distribution 

are provided. Calculations for the AIC weights and inverse variance weight model averaged estimates 

are provided in the Appendix. 

We utilize the MuMIn and EPI packages with R statistical software (v 3.0.2). We use Akaike’s 

information criteria (AIC) to average log risk estimates obtained by fitting generalized linear models; 

however, we should note that other information criteria, such as Bayesian (BIC), may be used with the 

MuMIn package. Bootstrap resampling is conducted with SAS statistical software (v9.2, Cary, NC). 
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3. Results 

The parameter estimates obtained from each individual model, and the averaged estimates, are 

presented in the Tables 1 through 3. Adjustment sets are numbered in Table 1 to simplify discussion; 

we refer to these numbers in Tables 2 and 3. The model averaged estimates, using AIC, for the relative 

risk (95% confidence interval) of cesarean delivery comparing overweight or obese women to normal 

weight women are 1.33 (0.86, 2.03) and 1.62 (1.09, 2.39), respectively. Results using BIC weighting 

were identical to AIC weighting and, thus, are not presented. The inverse variance weighted relative 

risks for cesarean delivery among overweight or obese women compared to normal weight women are  

1.37 (0.92, 2.04) and 1.61 (1.15, 2.27), respectively. Finally, the bootstrapping approach for averaging 

parameter estimates results in relative risks of cesarean delivery among overweight or obese women 

compared to normal weight women with a median (2.5th, 97.5th percentile values) of 1.34 (0.89, 2.01) and 

1.57 (1.07, 2.35); the medians are slightly attenuated compared to the means of 1.37 and 1.60 (Table 3). 

The averaged relative risks are similar for all three averaging methods. Table 4 presents the confidence 

limit ratio [26] for each averaging approach. While the inverse variance weighting approach is the 

most precise, the difference by averaging technique is trivial in this example. 

Table 1. Akaike’s information weighted averages. 

Adjustment Set Covariates 
Overweight vs. Normal Obese vs. Normal 

Risk Ratio 95% CI Risk Ratio 95% CI AIC Weight 

1 

Chronic hypertension, gestational 

weight gain, maternal age, 

maternal education, maternal race 

1.38 0.92, 2.09 1.75 1.23, 2.50 552.56 0.43 

2 

Chronic hypertension, maternal 

age, maternal education, maternal 

race, maternal height 

1.27 0.84, 1.92 1.46 1.04, 2.08 552.74 0.39 

3 

Gestational weight gain, maternal 

age, maternal education, maternal 

race, pre-eclampsia/eclampsia 

1.38 0.91, 2.09 1.74 1.22, 2.48 555.12 0.12 

4 

Maternal age, maternal education, 

maternal height, maternal race, 

pre-eclampsia/eclampsia 

1.29 0.85, 1.95 1.48 1.05, 2.10 556.43 0.06 

AIC Averaged values 1.33 0.86, 2.03 1.62 1.09, 2.39 

Table 2. Inverse variance weighted model averages. 

Overweight vs. Normal Obese vs. Normal 

Adjustment Set Risk Ratio 95% CI Risk Ratio 95% CI 

1 1.41 0.93, 2.11 1.86 1.32, 2.62 
2 1.35 0.92, 2.00 1.48 1.06, 2.06 
3 1.38 0.91, 2.09 1.74 1.22, 2.48 
4 1.33 0.89, 1.97 1.43 1.02, 2.01 

Average 1.37 0.92, 2.04 1.61 1.15, 2.27 

The total sample sizes for models 1, 2, 3, and 4 are 538, 588, 517, and 556, respectively.  
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Table 3. Bootstrap model averages. 

Overweight vs. Normal Obese vs. Normal 

Adjustment Set Risk Ratio 95% Interval † Risk Ratio 95% Interval † 

Mean Median Mean Median 

1 1.39 1.36 0.92, 2.02 1.78 1.76 1.28, 2.46 

2 1.34 1.31 0.90, 1.93 1.45 1.42 1.07, 1.98 

3 1.40 1.38 0.87, 2.08 1.76 1.73 1.18, 2.50 

4 1.34 1.32 0.87, 1.96 1.43 1.41 1.01, 1.99 

Average 1.37 1.34 0.89, 2.01 1.60 1.57 1.07, 2.35 
† 95% Intervals represent the 2.5th and 97.5th percentile of the parameter estimates obtained by  

bootstrap resampling. 

Table 4. Confidence limit ratios 1 for each model averaging approach. 

Averaging Approach Overweight Obese 

Akaike’s Information 2.36 2.19 
Inverse Variance 2.22 1.97 

Bootstrap resampling 2.26 2.20 
1 Upper limit divided by lower limit. 

Gestational weight gain is included only in adjustment sets 1 and 3, while maternal height is 

included only in adjustment sets 2 and 4. Thus, it appears that adjustment for maternal height induces 

greater attenuation of the effect of weight on cesarean delivery compared to gestational weight gain. 

Further, adjustment sets 1 and 2 receive more of the overall weight compared to adjustment sets 3 and 

4 using the AIC weighting method. In this example, weighting by information criteria and inverse 

variance produced similar results. 

4. Discussion 

We have suggested three approaches to average the results of confounder adjustment sets to account 

for uncertainty in model selection and to avoid investigator wish bias. We propose restricting candidate 

models to those supported by a directed acyclic graph, which allows readers to visualize and understand 

the causal structure and assumptions that the investigator identified before data analysis. A benefit is that 

researchers need not concern themselves with selection procedures such as change-in-estimate or 

backwards selection approaches. We preclude adjusting for causal intermediates, over-adjustment,  

or inducing confounding by collider stratification bias. These potential pitfalls that arise when using 

only prediction as the criterion for model selection have been noted by others [27,28]. 

Model selection continues to be a point of contention in epidemiology. Researchers are inconsistent 

in their choice of best practice [8,29]. Some methodologists have recommended adjustment for all 

baseline covariates (i.e., all variables that cannot be caused by the exposure of interest) that are known 

to have possible connections to the outcome [30]. However, this approach is often untenable. In fact, 

we attempted such an approach in this example and a full model did not converge. The use of DAGs to 

identify appropriate confounder adjustment has been well validated by theory [5,6] and simulation [31]. 
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If a DAG is correctly specified, adjustment sets supported by it will provide unbiased estimates of the 

causal effect on disease risk of some exposure of interest. Of course, it is unlikely, or impossible, that 

any DAG is specified with complete certainty, and it is a strong assumption that a DAG will fully 

represent the data generating process. Further, missing, or unmeasured, confounders not accounted for 

in a DAG might suggest that no adjustment set available to the researcher will provide an unbiased 

estimate of the causal effect. However, DAGs, at the very least, provide the means to minimize 

confounder bias and plainly communicate structural assumptions to readers. 

One approach presented uses information criteria to weigh the estimates from each adjustment set. 

This technique favors models that provide stronger prediction of the outcome. However, if there is a 

large volume of missing data for certain covariates, the AIC averaging approach will require ignoring a 

great deal of available information. The bootstrapping and inverse variance weighting approaches may 

be preferable because they do not have this restriction. Averaged estimates were nearly identical for all 

three averaging techniques in our example. 

Alternative approaches for model selection and averaging certainly exist. In particular, Bayesian 

model averaging is a popular, and well validated, approach to averaging or selecting among multiple 

candidate models [7,22]. While a potential alternative, use of Bayesian approaches to model averaging 

requires the specification of a priori values for all covariates considered in the procedure. This can be 

very helpful when there is prior information available to the researcher. However, in the absence of highly 

informative prior information, Bayesian model averaging may be more complicated than is necessary. 

As with any approach based on DAGs, our analyses are reliant on correct specification of the causal 

diagram. Further, our approach does not overcome limitations of misclassification, selection bias,  

or residual confounding. However, a priori knowledge of whether any specific covariates are subject 

to bias, such as misclassification, can help guide selection of models for consideration when 

conducting model averaging. In addition, investigators should be wary of averaging non-collapsible 

causal estimates such as odds ratios and hazard ratios, which will, in general, differ across alternative 

confounder adjustment sets [32]. 

5. Conclusions 

Model selection is an inherent part of any epidemiological analysis; however, investigator wish bias 

may unduly influence the selection of results that are reported in epidemiology. DAGs are an 

indispensable tool for identifying unbiased estimates of causal effect due to some exposure of interest 

that are established before data analyses. DAGs do not provide a means of selecting one among 

multiple, sufficient adjustment sets. By averaging the models supported by a DAG, we take account of 

uncertainty in model selection by considering all models that we believe provide unbiased estimates of 

exposure effect. 
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Supplementary Material 

1. AIC Model Averaging 

The calculations information criteria weighting are provided in Burnham and Anderson (2004). We 

briefly summarize the components that contribute to model averaging. 

The likelihood for each model is calculated as: ∆ = −  (1)

where gi models I = 1,2…R receive a value relative to the model with the smallest AIC value, or 

AICmin. This, of course, gives the model with the smallest AIC a value of zero. Next, models are given 

weights based on a transformation of the likelihood into a relative probability via the following 

formula: 

= exp(−∆2 )∑ exp(−∆2 ) (2)  

The sum of individual model probabilities will equal 1. Thus, the relative weight a model receives 

will be dependent on the other candidate models. However, the actual likelihoods of each model are 

invariant to the other candidate models. The weighted variance for each parameter, θ, is calculated as: 

( ̅) = + − ̅ /
 (3)

Finally, the model averaged θ is calculated as: ̅ =  (4)

2. Inverse Variance Weighting 

We treat the mean as an inverse variance weighted average of θ obtained from each model, gi, as: 

̅ = ∑∑ 1  (5)

In order to calculate the weighted variance,	σ , we weight each model variance by the total sample 

size, n, of the model, such that: = ∑ ( − 1)(∑ ) −  (6)
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3. Software code for recreating model averaged results for bootstrap and AIC techniques 

SAS code 
********************************************************************************* 
***** Model averaging via bootstrapping 
***** hamrag@fellows.iarc.fr 
***** Example from PIN study (UNC, Chapel Hill) 
***** To request PIN data, please visit: 
***** http://www.cpc.unc.edu/projects/pin/datause 
********************************************************************************; 
 
** Import data; 
 
proc import out=one datafile='YOUR Directory' 
dbms=csv replace; getnames=yes; run; 
 
** Recode variables from data so there are 0 references; 
 
data one; 
 set one; 
 bmi = C_BMIIOM - 2; 
 medu = edu - 1; 
 height = C_INCHES - 65.04; *Center height at mean; 
 
 if ind = 0 then induction = 0; 
  else induction = 1; 
 run; 
 
********************************************* 
***** Bootstrap data, 1000 replications 
*********************************************; 
 
proc surveyselect data=one out=pinboot 
 seed = 280420141 
 method = urs 
 samprate = 100 
 outhits 
 rep = 1000; 
run; 
 
 
***************************************************************** 
***** Fit 4 minimally sufficient models, output data from each 
*****************************************************************; 
 
* Model 1: adjust: hypertension, gestational weight gain, maternal age/edu/race; 
ods output ParameterEstimates = m1out; 
proc genmod data=pinboot desc; 
 by Replicate; 
 class bmi(ref=first); 
 model cesarean = bmi hyper C_WTGAIN mom_age medu race /dist=binomial 
link=log; 
 run; 
 
* Model 2: adjust: hypertension, maternal age/edu/race/height; 
ods output ParameterEstimates = m2out; 
proc genmod data=pinboot desc; 
 by Replicate; 
 class bmi(ref=first); 
 model cesarean = bmi hyper mom_age medu race height/dist=binomial link=log; 
 run; 
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* Model 3: adjust: gestational weight gain, maternal age/edu/race, eclampsia; 
ods output ParameterEstimates = m3out; 
proc genmod data=pinboot desc; 
 by Replicate; 
 class bmi(ref=first); 
 model cesarean = bmi C_WTGAIN mom_age medu race eclamp/dist=binomial 
link=log; 
 run; 
 
* Model 4: adjust: maternal age/edu/race/height, eclampsia; 
ods output ParameterEstimates = m4out; 
proc genmod data=pinboot desc; 
 by Replicate; 
 class bmi(ref=first); 
 model cesarean = bmi mom_age medu race height eclamp/dist=binomial link=log; 
 run; 
 
 
********************************************** 
****Extract BMI values from each dataset 
****First, for overweight vs normal 
**********************************************; 
 
data m1over (keep = Estimate Replicate model); 
 set m1out; 
 if Parameter = 'bmi' AND Level1 = 1; 
 model = 1; 
 run; 
 
data m2over (keep = Estimate Replicate model); 
 set m2out; 
 if Parameter = 'bmi' AND Level1 = 1; 
 model = 2; 
 run; 
 
data m3over (keep = Estimate Replicate model); 
 set m3out; 
 if Parameter = 'bmi' AND Level1 = 1; 
 model = 3; 
 run; 
 
data m4over (keep = Estimate Replicate model); 
 set m4out; 
 if Parameter = 'bmi' AND Level1 = 1; 
 model = 4; 
 run; 
 
 
**** Pool datasets and summarize estimate; 
data over; 
 set m1over m2over m3over m4over; 
 exp = exp(Estimate); 
 run; 
 
*summary of bootstrap estimates by adjustment set; 
proc univariate data=over; 
 by model; 
 var exp;  
 output out= over1a mean=mean pctlpts = 2.5, 50, 97.5 pctlpre=ci; 
run; 
 
 
*Model average of overweight versus normal weight; 
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proc univariate data=over; 
 var exp;  
 output out= over1b mean=mean pctlpts = 2.5, 50, 97.5 pctlpre=ci; 
run; 
 
 
********************************************** 
** Repeat above for obese versus normal 
*********************************************; 
 
data m1obese (keep = Estimate Replicate model); 
 set m1out; 
 if Parameter = 'bmi' AND Level1 = 2; 
 model = 1; 
 run; 
 
data m2obese (keep = Estimate Replicate model); 
 set m2out; 
 if Parameter = 'bmi' AND Level1 = 2; 
 model = 2; 
 run; 
 
data m3obese (keep = Estimate Replicate model); 
 set m3out; 
 if Parameter = 'bmi' AND Level1 = 2; 
 model = 3; 
 run; 
 
data m4obese (keep = Estimate Replicate model); 
 set m4out; 
 if Parameter = 'bmi' AND Level1 = 2; 
 model = 4; 
 run; 
 
 
**** Pool datasets and summarize estimate; 
data obese; 
 set m1obese m2obese m3obese m4obese; 
 exp = exp(Estimate); 
 run; 
 
*summary of bootstrap estimates by adjustment set; 
proc univariate data=obese; 
 by model; 
 var exp;  
 output out= obese1a mean=mean pctlpts = 2.5, 50, 97.5 pctlpre=ci; 
run; 
 
*Model average of overweight versus normal weight; 
proc univariate data=obese; 
 var exp;  
 output out= obese1b mean=mean pctlpts = 2.5, 50, 97.5 pctlpre=ci; 
run; 

 
*end of file; 
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R code 
########################################################################### 
##### Multi-model inference with AIC weighting 
########################################################################### 
 
## Load relevant libraries and set working directory 
 
library(Epi) 
library(foreign) 
library(MuMIn) 
library(boot) 
 
setwd('Your directory') 
 
## load and summarize data 
 
PIN <- read.csv('PIN.csv',header=T) 
 
str(PIN) 
 
## Re-code BMI and Education so there is a zero referent 
## also center height and record induction 
 
PIN$BMI <- PIN$C_BMIIOM - 2 
PIN$m_edu <- PIN$edu - 1  
PIN$height <- PIN$C_INCHES - 65.04 # center height 
PIN$induction <- as.numeric(ifelse(PIN$ind==0,0,1)) # categorize induction into 0,1 
 
#################################################### 
## Average over all minimally sufficient adjustment sets 
#################################################### 
 
## restrict data to exclude missings. Necessary for averaging with AIC! 
 
keep <- c('cesarean','BMI','hyper','C_WTGAIN','mom_age','m_edu', 
 'race','height','eclamp') 
 
PIN1 <- na.omit(PIN[keep]) 
attach(PIN1) 
 
################################################################# 
## NOTE: some models run with reduced adjustment sets to obtain 
## starting values that help with model convergence 
################################################################# 
 
## model 1: hypertension, gestational weight gain, maternal age/edu/race 
 
m1a <- glm(cesarean ~ factor(BMI) + hyper + C_WTGAIN + 
 mom_age + m_edu + race, 
 family=binomial(link='log')) 
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m1 <- glm(cesarean ~ factor(BMI) + hyper + C_WTGAIN + 
 mom_age + m_edu + race, 
 family=binomial(link='log')) 
 
summary(m1) 
ci.exp(m1) 
 
## model 2: hypertension, maternal age/edu/race/height 
 
m2a <- glm(cesarean ~ factor(BMI) + hyper + mom_age + m_edu +  
 race, 
 family=binomial(link='log'))  
 
m2 <- glm(cesarean ~ factor(BMI) + hyper + mom_age + m_edu +  
 race + height, 
 family=binomial(link='log'), start=c(coef(m2a),0))  
 
summary(m2) 
ci.exp(m2) 
 
## model 3: gestational weight gain, maternal age/edu/race, eclampsia 
 
m3 <- glm(cesarean ~ factor(BMI) + C_WTGAIN + mom_age + m_edu +  
 race + eclamp, 
 family=binomial(link='log'))  
 
summary(m3) 
ci.exp(m3) 
 
 
## model 4: maternal age/edu/race/height, eclampsia 
 
m4a <- glm(cesarean ~ factor(BMI) + mom_age + m_edu + race +  
 eclamp, 
 family=binomial(link='log'))  
 
m4 <- glm(cesarean ~ factor(BMI) + mom_age + m_edu + race +  
 eclamp + height, 
 family=binomial(link='log'), start=c(coef(m4a),0))  
 
summary(m4) 
ci.exp(m4) 
 
 
## Average the results of the four models above 
 
models <- list(m1,m2,m3,m4) 
 
AIC_avg <- model.avg(models, rank=AIC, cumsum(weight)<=0.95) 
 
summary(AIC_avg) 
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confint(AIC_avg) 
 
#end of file 
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