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Abstract In the first instalment of this series, Stang and

Poole provided an overview of Fisher significance testing

(ST), Neyman–Pearson null hypothesis testing (NHT), and

their unfortunate and unintended offspring, null hypothesis

significance testing. In addition to elucidating the distinc-

tion between the first two and the evolution of the third, the

authors alluded to alternative models of statistical infer-

ence; namely, Bayesian statistics. Bayesian inference has

experienced a revival in recent decades, with many

researchers advocating for its use as both a complement

and an alternative to NHT and ST. This article will con-

tinue in the direction of the first instalment, providing

practicing researchers with an introduction to Bayesian

inference. Our work will draw on the examples and dis-

cussion of the previous dialogue.

Keywords Significance testing � Probability statements �
Bayesian inference � Confidence intervals

Introduction

In the first instalment of this series, Stang and Poole [1]

provided an overview of Fisher significance testing (ST),

Neyman–Pearson null hypothesis testing (NHT), and their

unfortunate and unintended offspring, null hypothesis sig-

nificance testing (NHST). In addition to elucidating the

distinction between the first two and the evolution of the

third, the authors alluded to alternative models of statistical

inference; namely, Bayesian statistics. Interestingly,

Bayes’ theorem existed long before development of Fish-

er’s ST or Neyman–Pearson’s NHT [2]; the latter two have

dominated statistical thinking, notably in the field of public

health, for decades. Nonetheless, Bayesian inference has

experienced a revival in recent decades, with many

researchers advocating for its use as both a complement

and an alternative to NHT and ST [3].

This article will continue in the direction of the first

instalment, providing practicing researchers with an intro-

duction to Bayesian inference. We will discuss the theo-

retical framework for Bayesian analyses and some practical

considerations. We emphasize the distinction between the

previously discussed models of inference and Bayesian

methods by focusing on and explaining how researchers

can integrate prior information into Bayesian inference, by

design. We will continue the dialogue between researcher

and consultant as our didactic format. Our work will draw

on the examples and discussion of the previous dialogue.

Thus, we encourage the reader to review the first dialogue

of Stang and Poole [1].

Researcher I wanted to follow-up on our previous

meeting. I’m uncertain that any of the modes of inference

that we discussed are applicable to my research. I

remember thinking to myself that no matter what mode of
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inference I choose, it should not be a NHST. Therefore, I’m

left with Fisher ST and Neyman–Pearson NHT. Neither of

these is very attractive to me. I recall you mentioning

Bayesian inference as a viable alternative. I’d like to learn

more about that possibility.

Consultant As I recall, you’re interested in the difference

in five-year mortality risks among newly diagnosed skin

melanoma patients between those with immunohisto-

chemical factor A and those without that factor. I also

remember that you consider a protective effect of factor A

highly unlikely. You noted a body of existing research that

led you to this view.

Researcher That’s right. The evidence I have seen leads

me to believe that a protective effect is much less plausible

than a harmful one. I don’t see any way to give this

knowledge any credit in my research outside of a paragraph

in the introduction or discussion of a manuscript. Can

Bayesian inference allow me to integrate that information

in a quantitative instead of a qualitative way?

Consultant Before we discuss Bayesian inference, why

do you consider a protective effect so unlikely?

Researcher The existing literature clearly supports a

harmful effect rather than a protective effect. In fact, I have

never seen any evidence of a protective effect, though I

suppose it is not impossible. The epidemiologic evidence

varies in terms of study designs, periods of observation,

and other features, but it all indicates an association in the

direction of harm. Also, there is evidence of harm from

toxicology and mechanistic research. How can Bayesian

inference help me make use of this information in my

study?

Consultant Bayesian inference is learning process, ori-

ented more towards estimation than testing. While you can

still do testing with Bayesian methods [4] the beauty of

Bayesian inference is that you don’t need to posit

hypotheses before a study and see if your data and model

reject or fail to reject them, as you would with NHT. Nor

are you required to examine p values as inverse measures

of evidence against hypotheses, as in ST. Instead, you’ll

make probability statements that quantitatively summarize

the credibility of possible values of the 5-year mortality

risk difference you are estimating and then update those

statements with the results of your new study. In this way,

as more and more information becomes available, we can

quantitatively combine it with previous information and,

thus, learn more about the risk difference we are interested

in researching.

Researcher That sounds intuitively appealing to me,

much more so than testing the null hypothesis with a type I

error rate or interpreting p values, all of which seem

distantly connected, at best, to my research goal of esti-

mating that RD. How will I do these Bayesian

calculations?

Consultant In three steps. First, you’ll quantify your prior

probability distribution, which is the quantitative summary

of credible values of the RD that I mentioned. As the RD

can be any of an infinite number of values between -1 and

1, the formal term is probability density function, but we

can safely consider the distinction between probability and

probability density a technicality.

Next, you’ll conduct your study and obtain a risk dif-

ference estimate from that. This second step is where you

will learn the degree to which your study data and model

support each possible value of the RD, given the assump-

tions built into your statistical model. Think of this step as

similar, if not identical, to any statistical analysis you’ve

conducted before conducting a Bayesian analysis: your

work would have started and stopped with step two.

Finally, you’ll integrate the two using Bayes’ theorem,

[2, 5] which was developed for this purpose: to combine a

prior credibility distribution with a support function to

produce an updated, or posterior, credibility distribution.

Researcher You make it sound easy, almost too easy.

Could you explain how I quantify the first two components

to get to the third?

Consultant Why don’t we simply dive in? If you have a

calculator, or smartphone, we can conduct a Bayesian

analysis right here and now.

Researcher Well then let’s get started!

Consultant Very well. Suppose you have formulated a

prior represented by the curve on this graph (Fig. 1). It’s a

normal distribution with a mean RD of 0.20, a variance of

0.01 and a standard error of 0.1. According to this distri-

bution, you consider RD = 0.20 the most credible value,

based on all the relevant scientific information of which

you’re aware. It also says that you’re 95 % sure that the

true RD is between 0.00 and 0.40. This means you’re

2.5 % certain that the true RD is negative and 2.5 % certain

that it is[ 0.40.

Researcher This matches my current views quite well: I

don’t think it is impossible that factor A is protective, but I

do believe a reduced 5-year mortality risk is highly unli-

kely. Other informed experts might have a different prior,

but I believe it would be hard to defend a very different

prior from this one. What next?

Consultant Suppose that you conduct a pilot study of 100

patients with newly diagnosed skin melanoma. You observed

10 deaths among 50 patients with factor A and 5 deaths among

50 patients without factor A in the first 5 years. Conveniently,
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the likelihood function is normal, as shown in this graph

(Fig. 2). You’ll notice right away that it follows a similar shape

to your quantitative prior regarding the RD. The mean of the

likelihood function is an RD of 10/50 - 5/50 =

0.20 - 0.10 = 0.10. The estimated variance is 0.0051 [6].

Researcher I see that the curve for likelihood function

reaches its highest point at the point estimate of

RD = 0.10.

Consultant Yes, it does. That’s why it’s called the max-

imum likelihood estimate.

Researcher So, 0.10 is the value that’s most likely to be

the true value?

Consultant No, 0.10 is just the value to which this pilot

study gives the most support. We haven’t calculated the

value you should consider most likely to be the true value,

now that this study has been added to the relevant scientific

information.

Researcher Ah, I see. I’ll find that value on the curve that

represents my posterior credibility distribution. How do I

combine these two curves to get that one?

Consultant In this case, we simply combine the two esti-

mates with inverse-variance weighting. We can do this only

because both prior and likelihood are normal and, when

combined, form a normal distribution [7]. The weights for

the means of the prior and the likelihood function are

1/0.01 = 100 and 1/0.0051 = 196, respectively. Hence, the

mean of your posterior credibility distribution is

RD = [100(0.20) ? 196(0.10)]/(100 ? 196) = 0.13. The

posterior variance is simply the reciprocal of the sum of the

weights: 1/(100 ? 196) = 0.0034. Your posterior distribu-

tion is shown on this graph (Fig. 3). It says you’re now 99 %

sure the effect is harmful, up from approximately 98 %.

You’re 50 % certain the true RD is between 0.09 and 0.17,

whereas you were 50 % certain it was between 0.13 and

0.27 before the study. Your prior 95 % credibility interval

Fig. 1 The probability density

function summarizing the

researcher’s prior knowledge

regarding the risk difference

Fig. 2 The likelihood function

of the risk difference estimated

from the pilot study data and

model (solid blue line), along

with the researcher’s prior

probability density function

(dashed green line). (Color

figure online)
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for the true RD was 0.00–0.40 before the study. Now it’s

0.02–0.25.

Researcher This is exactly what I am trying to accom-

plish with my current work: take the data and model from

my pilot study and combine it with the existing evidence,

because there is a wealth of information regarding factor

A and mortality risk. It’s nice that rather than expounding

about how my study compares with other research, I can

actually provide a quantitative integration of the two.

How can I be sure that other researchers would have come

to the same conclusions as I regarding the prior and the

posterior?

Consultant You can never be sure of this. In fact, were

you to give the same pool of information to multiple

researchers to formulate a numerical prior, I would be

surprised if they came up with exactly the same results.

Equally, I’m confident many, well-informed researchers

would come up with pretty similar priors.

Researcher What if someone comes up with a different

prior than myself and, subsequently, a different posterior

credible interval? What if I missed an important piece of

evidence that someone else catches?

Consultant Don’t worry too much. The important thing is

to make what you did explicit and, thereby, expose it to

widespread scrutiny by other experts. If it makes you feel

better, it has been demonstrated that a reasonable prior will

often return a result that is an improvement on what you

would obtain otherwise [8]. In contrast, a default, flat prior

assumes that a risk difference of 1 in 10 is just as plausible

as a risk difference of 1 in 1,000,000 [2]. This prior is

implicit in traditional, frequentist analysis, since it’s anal-

ogous to saying before a study that you have no quantita-

tive belief about the RD you’re estimating. Of course, this

is ridiculous, because knowing the prevalence of disease in

the general population alone will give us some guidance

about a plausible range of values for the risk difference. An

informative (i.e., not flat) prior enables a researcher to

assign higher prior probabilities to RD values in ranges

known to be more realistic based on the general body of

scientific information [9].

Researcher That’s reassuring. One thing I noticed as we

were going through this example is that the 95 % posterior

credibility interval, while not equal to the 95 % confidence

interval sounds a whole lot like it. I assume there’s

something to distinguish the two.

Consultant Aside from the fact that the interpretation of a

confidence interval is not, as many believe, a probability

statement, the major distinction is that a frequentist-based

confidence interval does not permit you to incorporate the

relevant, existing scientific information into the data anal-

ysis. It relies solely on your pilot study.

Researcher So, in the case that I had a completely flat

prior, are the credible and confidence intervals not essen-

tially the same?

Consultant Essentially, yes. But think about the impli-

cations of that. If you had absolutely no prior information

to contribute to your study, and were willing to assume any

value of the RD is plausible, then you would effectively

have a flat prior with an infinite variance. In this case, the

likelihood function and the posterior credible interval

would be approximately equal.

Researcher Good point. I can’t imagine this ever being

the case. However, wouldn’t such an approach, not

imposing my prior beliefs, allow me to remain objective?

This is a major concern of mine with regard to any research

I do: the perception that I’m inappropriately imposing my

beliefs on a research study.

Fig. 3 The posterior

distribution of the risk

difference estimate (dotted red

line), which is the product of the

researcher’s prior probability

(dashed green line) and the

support function of the risk

difference (solid blue line).

(Color figure online)

G. B. Hamra et al.

123



Consultant Subjectivity in the appraisal of the existing

evidence, before and after the study at hand, is going to be

expressed anyway. It can either be expressed qualitatively,

with adjectives and adverbs, in the Introduction and Dis-

cussion sections of the paper, where anything goes, or it

can be expressed quantitatively in the Methods and Results

sections, where transparency and coherence are the orders

of the day.

Regardless of the decision to use a Bayesian approach, one

would be hard pressed to think of any data analysis as objective.

For example, specified type I and desirable type II error rates

are nearly always 5 and 20 %, respectively; however, their

frequency in research doesn’t make them objective or defen-

sible. Takevariable selection as another example.Nodoubt you

will be adjusting your analyses for important confounders. We

often start with a set of variables with which we think we can

best adjust confounding, such as age. This process is based on

background knowledge. Again, different researchers will reach

different conclusions about how to appropriately control con-

founding, [10, 11] or even how tomodel their exposure-disease

relationship. Thus, this process is inherently subjective, from

selecting the initial set of variables to consider to the decision of

how to conduct regression modelling.

This is not to say that a Bayesian approach is immune to

abuse and inappropriate use of priors. The most important

thing is that your subjective prior is, in fact, based on

existing evidence [4]. Further, one should err on the side of

ascribing less confidence in their prior by assigning it a

larger variance [12] and should very clearly describe how

the prior is formulated; doing so will ensure that other

researchers can compare their priors to yours. Finally,

always report your prior probability distribution and study

results along with your posterior distribution in the results

of all of your work to allow full transparency and scrutiny

by fellow researchers.

Discussion

We hope that this second dialogue has shown that Bayesian

inference is a more intuitive mode of statistical inference

compared to frequentist inference in the form of ST, NHT,

and NHST. We have provided a simple example to illus-

trate that a Bayesian approach can be as simple as a few

hand calculations, though this is not always the case.

As computational methods have advanced, researchers

have been able to explore and more easily implement Baye-

sian procedures. The most obvious benefit of a Bayesian

procedure is that it allows researchers to integrate existing

scientific information of relevance to parameters of interest

directly into data analysis. Bayesian hierarchical modelling is

a commonly usedmethodwhere parameters are modelled in a

way that assumes, a priori, that they are exchangeable, or

share a common mean and variance. However, many more

advanced procedures have been implemented, such as

adjustment for unmeasured confounders, information bias,

and selection bias [13–15]; imposing order constraints on

parameters based on evidence from toxicology [16]; and

restricting risk ratios estimates based on the knowledge that

the predicted probability of the outcome cannot exceed 1.0

[17]. While difficult, these procedures are likely within the

skill sets of many biostatisticians, who may aid practicing

researchers in implementation.

There are many published examples of implementing

Bayesian methods without advanced statistical software [2,

15]. Maclehose and Hamra provide a worked example using

inverse variance weighting [5]. Cole et al. [18] illustrate a

Bayesian approachwithout the need forMarkovChainMonte

Carlo methods. We provide, as an eSupplement, an example

of implementing a Bayesian analysis using SAS statistical

software using a 2 9 2 table example. Sullivan and Green-

land also provide a worked example of implementing a

Bayesian procedure in SAS statistical software [19, 20].

Finally, we would like to further emphasize the impor-

tance of formulating and explicitly describing the deriva-

tion of defensible priors. It is helpful for other researchers

with substantive experience to understand that the specified

prior has a strong foundation based on existing evidence.
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