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ABSTRACT
Objectives Mixed exposures are often combined into
single exposure measures using weighting factors. This
occurs for many complex mixtures in environmental and
occupational epidemiology including multiple congeners,
air pollutants and unique forms of ionising radiation,
among others.
Methods The weights used for combining exposures
are most often determined from experimental animal and
cellular research. However, evidence from observational
research is necessary to support their use in risk
analyses, since results from experimental research do not
directly translate to observational epidemiology.
Results Using simulated data, we show that
ratio-based relative weights cannot be reliably estimated
from observational research. As a solution to this
problem, we propose an approach for estimating
differences in effectiveness of distinct exposures based
on their excess effectiveness compared with a reference
exposure.
Conclusions This alternative is easy to calculate and
provides reliable estimates of differences in effectiveness
of distinct exposures. This is important to regulatory
bodies using relative measures for policy decisions, as
well as practicing epidemiologists conducting risk
analyses.

INTRODUCTION
Epidemiologists often investigate the effects of a
potentially complex mixture of exposures.
Recently, the National Institute of Environmental
Health Sciences labelled the evaluation of complex
mixtures a priority issue.1 Additionally, a recent
workshop of the US Environmental Protection
Agency called for further development of methods
to evaluate single pollutants within models consid-
ering multiple pollutants.2

In some cases, distinct exposures or agents are
combined together into a single metric of aggre-
gated exposure. One reason why this is done is to
reduce problems of estimation arising from high
correlation between measures of exposure to
various constituents of the mixture. Another ration-
ale is that components of a mixture with similar
chemical structure may act on the same disease
pathway.3 In addition, the effects of rare exposures
can be difficult to estimate; the contribution to
disease risk of rare exposures may be able to be
accounted for through aggregation with other, simi-
larly damaging exposures.

In order to combine different types of exposures
into a summary metric, a weighting factor is often
applied to each type of exposure reflecting an
assumption regarding its relative effectiveness at
causing the health outcome under investigation.
Examples include the effects of unique forms of
ionising radiation, multiple air pollutants and differ-
ent PCB congeners,4 5 among others. Choice of such
weights often follows from cellular and animal
research6 7; however, different studies may suggest
different values for weights, and extrapolation to
human health effects is often uncertain. Thus, it is
important to empirically evaluate decisions regarding
choice of weights used in epidemiologic analyses.
When estimated in epidemiologic studies, these

weights are often calculated as the ratio of the
slope coefficients of two exposures modelled inde-
pendently or in a single regression model. In this
paper, we explain and demonstrate why estimation
of relative weights from observational data as com-
monly practiced is inherently problematic. We
propose an alternative metric to estimate the effect-
iveness of one exposure compared with another in
settings in which a population is exposed to a
mixture of two or more types of exposures as
excess versus ratio-based effectiveness. Through
simulated data we illustrate that our proposed
approach yields valid estimates of differences in the
effectiveness of exposures. Our method can be
easily applied to complex mixtures across environ-
mental and occupational epidemiology.

What this paper adds

▸ Ratio-based relative weights are often used to
combine complex mixtures, but with little or no
support from observational epidemiology;
however, these weights are not easily obtained
from observational epidemiology.

▸ This study explains and demonstrates why
ratio-based relative weights are problematic,
and provides an easy alternative based on
excess measures of differential effectiveness for
complex mixtures.

▸ Policy makers and researchers conducting risk
assessment can use our proposed alternative
for better evaluation of the differential effects
of a complex mixture of exposures.
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METHODS
Consider a model for the relationship between two exposures
and outcome of the form,

Rate ¼ eui½1þðb1�Xþb2�YÞ� ð1Þ

where eθi indexes the baseline rate in stratum i, X and Y repre-
sent two exposures of interest, often cumulative over some time
period, with β1 and β2 representing the excess relative rate of
the outcome per unit increase in X and Y, respectively. We will
refer to this as the ‘independent’ model. Examples of exposures
might include multiple congeners, pesticides, or distinct forms
of radiation. X and Y may be combined into a single weighted
exposure term, D, with weights determined by the relative
effectiveness of one type of exposure over another. Supposing Y
is the reference exposure, D is expressed as D=q×X+Y, where
q represents a fixed weight meant to reflect the relationship of
X to an outcome of interest compared to Y’s relationship to
that same outcome, calculated from equation 1 as β1/β2.

If we wish to directly parameterise and, thus, estimate a rela-
tive weight from an observational study, we might consider a
model, such as

Rate ¼ eui½1þgðt�XþYÞ� ð2Þ

where τ is the effect of X relative to Y. The parameter τ is typic-
ally distinguished from q in the toxicology literature because the
former is a quantity estimated from the model and data. Note
that equation (2) is a simple reparameterisation of equation (1)
that allows direct estimation of a relative weight; exposures X
and Y are combined into a single exposure given the weight, τ.
Since τ is estimated from the model and data, as t̂, we obtain a
SE for its estimated value which we could also calculate from
equation 1. Unfortunately, t̂ as estimated from these models,
may not have desirable statistical properties.

The term τ is calculated as the ratio of estimates for the effect
of X and Y. When β1 and β2 are estimated using standard fre-
quentist techniques, their estimates, b̂1 and b̂2, are assumed to
have normally distributed errors. This has consequences for esti-
mation of τ since the ratio of two normally distributed estima-
tors follows a non-central Cauchy distribution.8 The Cauchy
distribution is similar to a normal distribution but with longer,
fatter tails and an extreme peak at its mode. The notable aspect
of a Cauchy distribution is that it lacks a mean or SD.9 Since the
mean and SD are undefined, attempts to estimate these para-
meters will typically result in poorly functioning procedures
with no guarantee that we will be estimating the parameter of
interest, or that our Wald-type CIs will have nominal coverage.
From a substantive perspective, the non-central Cauchy formed
by the ratio of these normal random variables can be either uni-
modal or multimodal.8 A bimodal distribution for the effect of
interest may not be substantively appealing. However, we
suggest below that a multimodal distribution for t̂ would not be
uncommon.

An alternative to assessing effects of exposure on a ratio scale
is to focus on a model that allows one to evaluate absolute dif-
ference in the effect of two or more exposures. Consider equa-
tion 3,

Rate ¼ euið1þb(XþY)þv�XÞ ð3Þ

where ω represents the excess biological effectiveness of some
outcome for exposure X compared to exposure Y, or β1–β2 from
equation 1. We will refer to this as the excess effectiveness

model. Again, we are reparameterising equation 1 to allow esti-
mation of the effectiveness of one exposure compared with
another. Here, X and Y are summed, and any difference
between the effectiveness of X relative to Y is described by ω.
Similar to τ in equation 2, this model allows direct estimation of
a value for the excess effectiveness (which would be identical to
the difference of β1–β2 from equation 1) as well as its variance,
which would require additional calculations if equation 1 were
estimated. By contrast with equation 2, the estimate of ω, v̂,
will be asymptotically normally distributed instead of Cauchy
distributed. While both terms can be estimated from epidemio-
logic data when people are exposed to a mixture of two or
more types of hazards, the excess measure provides a more stat-
istically reliable metric for integrating differential effects of
exposure and is simple to apply. It should be noted that the
exposures of interest should always be measured in the same
units; for example, X and Y could be two forms of radiation
measured in units of absorbed dose (mGy). This is necessary for
calculation of weights for all the equations described above.
Below, we present an example where the quantities of interest
are t̂ and v̂.

Simulation example
Simulations were based on a method developed by Richardson
and Loomis.10 Cohort sizes of 5000, 10 000 and 20 000
workers were simulated to increase the precision of the esti-
mated baseline exposure effect (more workers will result in
greater precision) and investigate how this influenced the
estimation of the τ and ω. For each simulation, 500 cohorts
were simulated, and for each cohort, we randomly assigned
values for age at first exposure (18 years plus a random expo-
nential variable with mean 10) and maximum follow-up time
(40 years minus a random exponential variable with mean 5) to
each worker. Also, each worker was assigned a maximum expos-
ure duration of 15 years and intensity (exposure per year) to
two exposures, x and y. Exposure intensity variables are distrib-
uted with x ∼ lognormal (μx=0, σx=0.5) and y ∼ lognormal
(μy =0, σy=1), both truncated to be between >0 and <10.
We conducted simulations where x and y are assumed to be
independent, and where we induced correlation between the
two (r=0.5).

From start of follow-up until each year, the worker’s current
age and cumulative exposure (equal to the intensity of the
worker’s exposure multiplied by exposure duration) was calcu-
lated. Also, at each year, the mortality rate for the outcome of
interest (conditional on survival to that age) was assigned to
each worker such that:

Rate ¼ e
�7:2þ1:5�ln

age
55

� �
ð1þ0:01�Ycumexpþ0:04�XcumexpÞ

where Ycumexp and Xcumexp represent the sum of exposures y
and x, respectively, from the start of follow-up to each subse-
quent year. This model form is the same as that identified in
equation 1; however, we reiterate that we could generate the
same data using equations 2 and 3. The same simulated data
will be used to fit models for equations 1–3. We should note
that while X and Y denote a time-varying measure of cumulative
exposure here they could represent any summary metric of
exposure (such as a time window or single point exposure).
Additionally, at each year, a conditional probability, c, of mortal-
ity from any other outcome (conditional on survival to that age)
was assigned to each worker based only on the worker’s age
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using the following formula:

c¼e
�5þ5�ln

age
55

� �

Two Bernoulli random variables were assigned to each worker
at each year, one with probability h, and one with probability
c. A Bernoulli random variable of 1 represents a death in that
year from the outcome of interest or from another outcome,
respectively. A worker is followed-up until death. A worker is
considered censored if simulated death is from another
outcome, or if he made it through all years of his maximum
follow-up time with no deaths. A worker is considered a case if
death is from the outcome of interest. The final cohorts con-
sisted of 5000, 10 000, or 20 000 workers with variables indi-
cating for each worker the age at first exposure, age at death/
censor, age at last exposure (which is the minimum of age at
first exposure plus 15, and age at death/censor), exposure inten-
sity per year, and case status. Results fit using equation 1 are
presented in order to assess the change in the stability of param-
eter estimates as we increase the number of simulated cohorts,
and to display alternative calculation of CI coverage of τ using
the delta method. We fit models applying equations (2) and (3)
to the data in order to empirically estimate τ and ω, respectively.
The true values of β1 (effect of exposure X) and β2 (effect of
exposure Y) are 0.04 and 0.01, respectively. Thus, the true τ
and ω are 0.04/0.01=4 and 0.04–0.01=0.03, respectively. This
value is within the range of expected values for some forms of
radiation6 11 12 as well as multiple congeners.4 5 For each simu-
lated dataset, we saved t̂, v̂ and their empirical and estimated
SEs. Empirical SE is calculated as the SD of the 500 simulated
parameter estimates. The estimated SE represents the average of
the SEs calculated for each individual simulation. We also calcu-
lated whether estimated CIs contained the true value of the
parameters of interest. We use profile likelihood ratio-based
methods to calculate CIs and coverage probability since
Wald-based methods are known to perform poorly for linear
rate models.13 14 Simulations were conducted using SAS
Software (V.9.1.3, SAS Institute, Cary, North Carolina, USA)

and analyses were conducted using the procedure NLMIXED in
that statistical package. Additionally, analyses were conducted
where the number of simulated cohorts was increased from 500
to 10 000. However, these results were similar to those pre-
sented and, thus, are not shown. The online supplementary
eAppendix provides code for implementing these models with
the procedure NLMIXED in SAS.

RESULTS
Table 1 summarises results of the simulations. The independent
model (equation 1) returns similar estimates for b̂1 and b̂2 for
simulations of 5000–20 000 workers. As the number of workers
increases, the empirical and estimated SEs decrease. These esti-
mates are similar for the independent model, so here we discuss
the empirical SE. For simulations including 5000, 10 000 and
20 000 workers, the empirical SEs for b̂1 are 0.0253, 0.0146
and 0.0100, respectively; errors for b̂2 are similar to b̂1 and
follow the same pattern of decrease with increasing number of
workers. Finally, 95% CI coverage is close to the nominal level
for all parameters and simulations.

Results for ĝ from equation 2 follow those for the independ-
ent model; that is, they improve as the number of observations
increases. However, the estimate of t̂ is unstable. The model
fails to provide an unbiased estimate of the true value of 4.0 in
these simulations. Further, the estimated SEs overestimate the
empirical SEs and do not always decrease when increasing the
number of workers. This suggests that estimates of SEs will be
too large, on average, in a given study. Likelihood-based CIs for
τ give approximately correct coverage in all simulations. This
may be due to the combination of a biased estimator with CIs
that are too wide. Finally, only 87–90% of the 500 simulations
for τ were able to converge, suggesting inherent difficulty in esti-
mating a ratio measure of effectiveness. This may explain some
of the bias observed in the results.

The excess effectiveness model (equation 3) displays behav-
iour similar to the independent model (equation 1). The simula-
tion of 5000 workers returns the expected point estimate
(v̂=0.031) and provides appropriate CI coverage; these results

Table 1 Simulation results comparing equations 1–3 with varying numbers of simulated workers

Equation
Number of
workers

Number of
cohorts

Parameter
estimated

Mean of estimated
parameter

Empirical
SE

Estimated
SE

Likelihood 95%
CI coverage

1 5000 500 b̂1 0.0150 0.0253 0.0235 95.8
b̂2 0.0459 0.0251 0.0223 94.2

2 434 ĝ 0.0178 0.0260 0.0248 95.2
t̂ 2.854 6.725 14.63 94.7

3 500 b̂ 0.0150 0.0253 0.0235 95.8
v̂ 0.0309 0.0200 0.0201 95.6

1 10 000 500 b̂1 0.0116 0.0146 0.0141 95.6
b̂2 0.0418 0.0133 0.0130 94.8

2 434 ĝ 0.0138 0.0144 0.0144 94.9
t̂ 4.632 8.811 15.11 94.7

3 500 b̂ 0.0116 0.0146 0.0141 95.6
v̂ 0.0302 0.0136 0.0129 93.6

1 20 000 500 b̂1 0.0109 0.0100 0.0096 94.4
b̂2 0.0410 0.0088 0.0089 95.4

2 451 ĝ 0.0125 0.0094 0.0097 95.3
t̂ 5.296 6.668 9.712 94.2

3 500 b̂ 0.0109 0.0100 0.0096 94.4
v̂ 0.0300 0.0090 0.0088 94.4
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are consistent when increasing the number of workers.
Additionally, the empirical and estimated SEs decrease when we
increase the number of simulated workers. These values are
similar, so we only discuss the empirical SE here. The empirical
SE for simulations of 5000, 10 000 and 20 000 workers for the
excess effectiveness coefficient are 0.0200, 0.0136 and 0.0090,
respectively. Thus, the excess model follows a predictable
pattern, similar to the independent effects model.

Figure 1 provides a visual summary of simulated values of t̂
and v̂; 10 000 simulations were used to aid in development of
graphics; increasing the number of simulations yields results
similar to table 1, and are not presented here. The histogram
and kernel density smoother show that the distribution of t̂ is
multimodal. While one mode is very peaked for a positive
value, there is a second, less pronounced mode below zero. The
bimodal shape of the distribution arises from the fact that the
reference exposure has a small effect with a wide enough vari-
ance to allow its estimate to be negative in some simulations.
The simulations in which the reference exposure is small but
positive yield a large positive value of t̂, while the simulations in
which the reference exposure is small but negative yield a large
negative value of t̂. By contrast, the histogram for v̂ appears
approximately normally distributed, and the shape of the distri-
bution is not impacted by changes in the sign of the referent
exposure.

A common alternative approach to directly estimating t̂, is to
calculate the ratio b̂1/b̂2 from equation 1 and to estimate the SE
of the estimator with the delta method.15 This approach allows
us to assess the performance of t̂ in all simulated datasets, even

those for which the model in equation 2 did not converge.
Table 2 summarizes the results of applying the delta method to
calculation of the relative effectiveness and its SE from b̂1 and
b̂2 obtained from equation 1 for each simulation scenario pre-
sented in table 1. Increasing the number of workers from 5000
to 20 000 for 500 simulated cohorts provides some improve-
ment of the 95% CI coverage, increasing from 72.6% to
84.8%. However, the empirical and estimated SEs are rather
large for all simulations. None of these scenarios provide an
unbiased estimate of t̂. Finally, additional analyses were con-
ducted that assessed the effect of introducing correlation (correl-
ation coefficient=0.5) between X and Y; however, results were
similar to those presented, and thus are not included.

DISCUSSION
The empirical evaluation of the differential effects of multiple
exposures from epidemiological data is complicated by its reli-
ance on calculating the ratio of two normally distributed para-
meters. Direct parameterisation (equation 2) as well as the
calculation based on the ratio of two model parameters (equa-
tion 1) are unable to provide reliable estimation of a ratio
measure of effectiveness. The result is an estimator that is likely
to be biased, as demonstrated by our simulations. We propose
an excess metric on the additive scale to directly estimate the
differential effect of exposures as a simple alternative. We show
that increasing the amount of data does not necessarily improve
estimation of the relative effectiveness measure, τ. Additionally,
we show that the excess measure, ω, will provide more precise
and unbiased estimates of differential effects of unique expo-
sures by taking the absolute difference of two parameters and
providing a measure that also follows a normal distribution.

The use of fixed weights to combine multiple, unique expo-
sures is common in the field of environmental and occupational
epidemiology. In radiation epidemiology, the relative biological
effectiveness (RBE) is used to specify a fixed weighting factor
for combining different forms of radiation in a diverse mixture
into a single exposure metric. When summing multiple conge-
ners, researchers use a relative potency factor (RPF) or toxic
equivalency factor (TEF), which is an estimate of an individual
chemical’s ability to cause a toxicologic or biologic outcome
relative to 2,3,7,8-TCDD or PCB 126.16 17 RPFs or TEFs are
also used to combine distinct pesticides, particularly organopho-
sphates and polycyclic aromatic hydrocarbons into a single
exposure measure.18 19 Evidence regarding RBE, TEF and RPF
is often drawn from toxicology research so that the value can be
implemented in risk assessment or epidemiologic analyses to
create more parsimonious models.4 This is likely necessary
because a measure of relative effectiveness often cannot be reli-
ably estimated from observational data.

If the RBE, RPF, or TEF correctly describes the relative
effects of multiple exposures, and if the exposures can be
summed assuming they work in a single disease pathway, then

Figure 1 Distribution of relative weight (bottom) and excess weight
(top) values from 10 000 simulated cohorts of 5000 workers.

Table 2 t̂ Calculated from equation 1 with the delta method for
500 cohorts

Number of
workers

Mean of
estimated
parameter

Empirical
SE

Estimated
SE

Wald 95%
CI coverage

5000 0.5741 21.25 145.8 72.6
10 000 −0.3110 149.9 537.4 81.2
20 000 7.543 45.73 412.8 84.8
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they provide a useful tool for combining different exposures.
Correct knowledge of a weighting value would allow easy
pooling of multiple exposures into a single metric, simplifying
risk assessment and epidemiologic analyses. While toxicology
provides guidance for assigning weighting factors, there is often
variation in estimates of the value across animal and cellular-
level outcomes. Additionally, extrapolating information from
toxicology to epidemiology is inherently problematic.20 In the
case that the weighting factor is mis-specified, risk estimates may
be distorted.

Some researchers have attempted to empirically estimate the
RBE in radiation research.11 21 Shimizu et al22 estimated values
of the neutron RBE of 52.0 for leukaemia, and 10.1 for other
cancers among A-bomb survivors, relative to gamma radiation;
both estimates were subject to significant statistical uncertainty.
Kellerer et al23 also evaluated the RBE among updated A-bomb
survivor data, relying on the minimum deviance to evaluate the
best value for the RBE. They concluded that an RBE value for a
neutron dose of 100 provided the best model fit. The 95% con-
fidence bounds for this estimate were 25–400. Uncertainty of
this degree has led researchers to conclude that the RBE cannot
be estimated from epidemiological data.24 While this assessment
is reasonable, the challenge has as much to do with limitations
of epidemiological data as with the fact that the ratio measure
of effectiveness are quantities that do not lend themselves to
empirical evaluation. Our results show that increasing the
amount of data would not help estimation of the RBE. For this
reason, we believe the excess measure is an appealing alternative
to the RBE.

It is important to note that we include only limited simula-
tions. The parameter values chosen in our simulation are con-
sistent with values seen in the literature regarding effects of
radiation or multiple congeners on various outcomes of inter-
est.11 12 25 Exposures to radiation, multiple congeners, or other
common exposures, are often associated with only modest
increases in risk due to exposure.26 The instability of the relative
measure of effect (RBE, TEF, or RPF) is augmented when the
referent category has low risk. Had the referent effect been
larger (or the variability of the referent parameter estimate suffi-
ciently reduced by increasing the sample size), the undesirable
properties of τ may have been less apparent. However, we
included simulations with 20 000 workers (observations) with
complete exposure history and demographic information and
still observed bias in estimates of τ.

We conducted simulations where modest correlation between
the variables was included, and our results were the same.
However, applying any of these models in the presence of more
highly correlated variable may result in less precise estimates.
Stabilising estimates using Bayesian techniques may help in these
settings.27 Additionally, our weights do not solve issues of meas-
urement error that are common in environmental and occupa-
tional epidemiology. That is, if the exposures are incorrect, the
estimated weights will be subject to bias in all the models pre-
sented. The extent of bias that would be expected in the pres-
ence of measurement error is beyond the scope of the
simulations presented in this paper. Our simulations dealt with
the common excess relative risk model. When other models,
particularly linear ones, are chosen by the investigators, simple
transformations may be available to circumvent these problems.
Similarly, other approaches, such as non-parametric bootstrap-
ping, may be helpful in some settings.

We note that the difficulty in estimating relative measures of
effect has been mentioned before.28 Similar problems are
observed in the toxicology literature when measuring LD50,

and in the cost effectiveness literature when estimating cost
effectiveness ratios.29 As in those fields, the difficulty in inter-
preting τ is compounded by the ability of the effect of either
type of exposure to be negative. In the event that both coeffi-
cients in equation (1) are negative, we would estimate a positive
estimate of τ. In the event that only one coefficient is negative,
we would estimate a negative τ which would not agree with the
order of the relationship suggested by independent risk coeffi-
cients; in other words, a more damaging exposure’s relative
effectiveness measure might suggest it to be more protective.

Estimation of an excess term is clearly more feasible than esti-
mation of a ratio term from epidemiological data. Results of
simulation data show that our alternative parameterisation pro-
vides more reliable estimation compared to a model with a par-
ameter for relative effectiveness (equation 2). Like the ratio
measure model, the excess measure model is amenable to appli-
cation of a fixed value for the differential effects of unique
exposures when evidence strongly supports such a term. Thus,
the excess measure model has the dual use of allowing for esti-
mation and application of weights for differential effects of
mixed exposure to estimate cumulative risk.
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