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Bayesian posterior parameter distributions are often simulated using Markov chain Monte Carlo (MCMC)methods.
However, MCMCmethods are not always necessary and do not help the uninitiated understand Bayesian inference.
As a bridge to understanding Bayesian inference, the authors illustrate a transparent rejection sampling method. In
example 1, they illustrate rejection sampling using 36 cases and 198 controls from a case-control study (1976–1983)
assessing the relation between residential exposure to magnetic fields and the development of childhood cancer.
Results from rejection sampling (odds ratio (OR) ¼ 1.69, 95% posterior interval (PI): 0.57, 5.00) were similar to
MCMC results (OR ¼ 1.69, 95% PI: 0.58, 4.95) and approximations from data-augmentation priors (OR ¼ 1.74,
95% PI: 0.60, 5.06). In example 2, the authors apply rejection sampling to a cohort study of 315 human immuno-
deficiency virus seroconverters (1984–1998) to assess the relation between viral load after infection and 5-year
incidence of acquired immunodeficiency syndrome, adjusting for (continuous) age at seroconversion and race. In this
more complex example, rejection sampling required a notably longer run time than MCMC sampling but remained
feasible and again yielded similar results. The transparency of the proposed approach comes at a price of being
less broadly applicable than MCMC.

Bayes theorem; epidemiologic methods; inference; Monte Carlo method; posterior distribution; simulation

Abbreviations: AIDS, acquired immunodeficiency syndrome; HIV, human immunodeficiency virus; MCMC, Markov chain
Monte Carlo; PI, posterior interval.

Editor’s note: An invited commentary on this article
appears on page 376, and the authors’ response appears
on page 379.

Bayesian posterior parameter distributions are usually
simulated using Markov chain Monte Carlo (MCMC) methods
(1–6). In some simple settings, one may directly calculate
the posterior parameter distribution of interest without the
need for MCMC methods. However, when a model contains
many parameters (as when it contains many confounders),
direct calculations can become intractable, and approximations
become necessary. Those approximations can be divided into
2 types: posterior simulation, in which a picture of the pos-
terior distribution is built by sampling from it, and analytic
approximation, in which properties of the posterior distri-
bution (such as its mode, mean, and variance) are described

using large-sample formulas similar to those used in fre-
quentist inference to describe likelihood summaries (such
as the maximum-likelihood estimator).

Analytic approximations can be done quickly in comparison
with simulations, and thus they facilitate large-scale sen-
sitivity analyses. As another advantage, analytic approxima-
tions based on data augmentation can be conducted using
ordinary regression software (7–9). This is because data aug-
mentation represents the prior by means of pseudodata, which
can be combined with the observed study data using methods
familiar to epidemiologists, such as inverse-variance weight-
ing or maximum likelihood. In this way, data augmentation
provides an introduction to Bayesian inference that is quite
natural to epidemiologists and easy to carry out with whatever
software is at hand.

Posterior simulation methods have important advantages,
however. Even in small studies, the simulation error can be
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made arbitrarily small by making the number of simulation
draws large enough (albeit at the cost of longer run time); in
this sense, simulation provides a Bayesian analog to frequentist
exact methods. Furthermore, unlike basic analytic approxima-
tions, MCMC simulation can handle very high-dimensional
problems that often arise today (e.g., in genomics). It is thus
unsurprising that, over the past few decades, MCMC methods
have been the most popular simulation techniques among
statisticians.

Unfortunately, due largely to the fact that MCMC produces
correlated draws from the posterior distribution, the pro-
cedure can run very slowly, requires more technical attention
to convergence issues than do other methods, and requires
more sophisticated theory to understand its inner workings.
To provide a bridge for understanding sophisticated methods
such as MCMC, we illustrate a simple rejection-sampling
approach (10) to simulate posterior distributions and compare
it with other methods using 2 real-data examples. We con-
clude that, despite limitations, rejection sampling is useful
for teaching and implementation of simple Bayesian analysis
in epidemiology.

MATERIALS AND METHODS

Example 1: magnetic fields and childhood cancer

In a classic and somewhat controversial early study of the
relation between residential exposure to magnetic fields and
the development of childhood cancer, Savitz et al. (11) col-
lected data on all 356 cancers diagnosed in residents under
age 15 years between 1976 and 1983 in the 5-county 1970
Denver, Colorado, Standard Metropolitan Statistical Area.
Controls were selected by random digit dialing. Exposure
was assessed using in-home electric and magnetic field mea-
surements under low and high power conditions. To facilitate
direct comparison between the approach illustrated here
and data augmentation as described by Greenland (8), we re-
strict our attention to the 36 leukemia cases and 198 controls
examined previously (12). We concentrate on magnetic field
exposures classified as greater than 3 mG (milligauss) under
low power-use conditions (x ¼ 1 for �3 mG, 0 for <3 mG),
leading to 3 exposed cases and 5 exposed controls. The
data model we will use assumes that the probability pi of
being a leukemia case is pi ¼ expit(b0 þ b1xi), where
expit(.) ¼ exp(.)/[1 þ exp(.)] and exp(b1) is the odds ratio
for the association of fields greater than 3 mG with leukemia.

Example 2: viral load and incident AIDS

The Multicenter AIDS Cohort Study (13) began in 1984 and
enrolled 6,972 homosexual and bisexual men in Baltimore,
Maryland; Chicago, Illinois; Pittsburgh, Pennsylvania; and
Los Angeles, California. Every 6 months, participants un-
derwent a physical examination, completed an extensive
interviewer-administered questionnaire collecting informa-
tion on use of antiretroviral therapy, and provided a blood
sample for the determination of CD4 cell count and human
immunodeficiency virus (HIV) viral load. Positive enzyme-
linked immunosorbent assays with confirmatory Western
blots were used to determine seropositivity for HIV type 1.

Data were obtained from version 11 of the public use data
set and were restricted to 315 men who were observed to
seroconvert (become HIV-positive) between 1984 and 1998.
Sixty-one incident cases of acquired immunodeficiency syn-
drome (AIDS) were observed within 5 years of HIV sero-
conversion; 19 men were lost to follow-up, and 235 men
were administratively censored at the minimum of 5 years or
1998. The exposure x was a high viral load set point, defined
as a viral load greater than 105 copies/mL of plasma mea-
sured within 9 months of the estimated seroconversion date.
Covariates included race (50 nonwhites, 265 whites; r ¼ 1
indicates nonwhite race) and age at seroconversion (median,
34 years; quartiles, 29 and 39 years; ai ¼ age in decades). Of
315 men, 73 were exposed with a high viral load set point,
and 25 of these 73 exposed men were AIDS cases. The data
model we will use assumes that the probability pi of being an
AIDS case for patient i is pi ¼ expit(b0 þ b1xi þ b2ai þ b3ri),
where exp(b1) is the odds ratio for the association of high
viral load with AIDS.

Prior specification

Bayes’ theorem states that the posterior distribution for
parameters of interest b given observed data O, f (bjO), is
proportional to the prior distribution for b, f(b), multiplied by
the likelihood of the observed data Lðb;OÞ: f ðb jOÞ } f ðbÞ 3
Lðb;OÞ. In example 1, the parameters b ¼ (b0,b1) include the
intercept b0 and the log odds ratio b1, and the data O ¼ {X,Y}i

for i¼ 1 to 234 consist of an indicator X of exposure to greater
than 3 mG and an indicator Y of leukemia; the likelihood is
then of the binomial form Lðb;OÞ ¼

Qn
i¼1p

yi

i 3ð1 � piÞð1�yiÞ:
In example 2, the data O ¼ {A,R,X,Y}i for i ¼ 1 to 315

consist of age and indicators for nonwhite race (r ¼ 1), expo-
sure to a high viral load set point (x ¼ 1), and incident AIDS
(y ¼ 1), respectively. The likelihood also follows the binomial
form given above, where pi ¼ expit(b0 þ b1xi þ b2ai þ b3ri).

In example 1, following Greenland (8), we use a null-
centered lognormal prior for the magnetic field-leukemia
odds ratio with 95% of the prior mass between an odds ratio
of 1/4 and 4, representing nondirectional prior information
that the association is probably small or at most modest. This
prior corresponds to a normal distribution for the log odds
ratio b1 with a mean (location parameter) l ¼ 0 and a var-
iance r2 ¼ 1/2 (so that r is the prior standard deviation of b1),
and is roughly equivalent to adding a stratum with 4 exposed
cases and 4 unexposed cases to the data (8). We use a vague
prior for the intercept—specifically, a normal distribution for
b0 with a mean l¼ 0 and a variancer2 ¼ 100 (use of an even
less informative prior on the intercept (i.e., r2 ¼ 1,000) did
not alter inferences). We assume that the priors for the log
odds ratio and intercept are independent.

In example 2, we again assume the same vague prior for
the intercept b0 and the same null-centered moderately infor-
mative log odds ratio prior for b1, the coefficient of the high-
viral-load set point exposure (i.e., b1 has prior mean l¼ 0 and
prior variance r2 ¼ 1/2). We also assign the same normal
(0, 1/2) prior to the race coefficient b3 (14). However, given
existing evidence of higher AIDS incidence with older age
(15, 16), the normal prior for the age coefficient b2 was
chosen to give an odds ratio of 1.25 per decade of age with
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95% of the prior mass between 0.84 and 1.85 (implied by
giving b2 prior mean l¼ 0.223 and prior variance r2 ¼ 1/25).
Again, we assume independent priors for all of the coefficients.

Maximum-likelihood and MCMC methods

All analyses were conducted using SAS, version 9.2 (SAS
Institute, Inc., Cary, North Carolina). Maximum-likelihood
results were obtained from the SAS procedure GENMOD,
which computes confidence intervals using the Wald method
(i.e., estimate 6 1.96 times the approximate standard error).
For the initial Bayesian analysis, we generated 20,000 3 K
MCMC draws from the posterior distribution using the
BAYES statement in the SAS procedure GENMOD, with the
priors described above. We discarded the initial 1,000 draws
for each chain to help ensure that the sampler had converged
before obtaining the 20,000 3 K draws that we used. Details
about the MCMC approach used by SAS are provided in
Appendix 1. In both examples, we chose K ¼ 5 and used
every fifth draw to minimize autocorrelation of the draws;
this choice produced absolute autocorrelations below 0.01.
We also computed the Gelman-Rubin convergence diagnostic
using 3 chains, each of size 20,0003 K (17); in both examples,
this diagnostic was essentially 1, which suggests that noncon-
vergence was not detected. In Appendix 1, we also pro-
vide SAS code for implementing this MCMC approach.

Rejection sampling

The rejection-sampling approach we illustrate has 4 steps:
1) draw parameters from the joint prior distribution of the
model parameters; 2) perform a standard maximum-likelihood
analysis of the observed data; 3) compute the likelihood of
each prior draw given the observed data, relative to the max-
imum (i.e., the acceptance ratio, also sometimes called the
importance ratio); and 4) accept a draw with a probability
based on the relative likelihood of the draw. We provide
a step-by-step overview of the process using example 1.

We begin by generating a sample of M draws from the
joint prior distribution of the two parameters, namely the
intercept b0 and log odds ratio b1. The range of the prior
must contain the range of the posterior or the rejection sampler
will not fully capture the posterior distribution. To protect
against extremely long run times, we set a maximum M of
10,000,000 (which is necessary in example 2).

Second, we find the maximum-likelihood estimates from
the observed data and compute the maximum of the likelihood
Lðbb;OÞ, where b ¼ (b0, b1) is the vector of all of the model
parameters; this maximum is just the antilog of the model
log likelihood supplied by the logistic regression program.

Third, we compute the likelihood for each of the M prior
draws, L(bm; O), using the likelihood function from the
observed data. Specifically, these are the values of the likeli-
hood function at the prior parameter values that were drawn.
From these likelihood values, we compute the relative like-
lihood or acceptance ratio, pm ¼ Lðbm;OÞ=Lðbb;OÞ, which
has the range 0–1.

Fourth and lastly, for each draw m ¼ 1 to M, we compare
a uniform random number Um, drawn from the range 0–1,
against the acceptance ratio pm. Specifically, we select only

those parameter draws for which Um < pm as draws from the
posterior distribution. Therefore, the lower the likelihood of
a prior parameter draw, the more probable is its rejection
from the posterior sample. SAS code for implementing this
rejection sampling for example 1 is given in Appendix 2.

Data augmentation

We implemented data augmentation using offsets, with
rescaling to improve the asymptotic approximation. Because
details are covered elsewhere by Greenland (9), we provide
only a brief outline.

One added data record was constructed for each prior,
including the intercept. These prior records were appended
to the observed data. Additionally, an offset term was added
to the regression model, and an explicit intercept was
added to the covariate vector (with the automatic intercept
suppressed). The offset term is 0 for actual data records.
Each prior record represents a subgroup with A pseudocases
out of 2A pseudo-observations. The offset for this record is
given by �ln(l)/S, where S ¼ r(A/2)1/2 is a rescaling factor.
We chose A ¼ 500, which leads to S � 11.18 when r2 ¼ 1/2
as for the target log odds ratio b1. The exposure level in this
record is set to X ¼ 1/S � 1/11.18 ¼ 0.0894, while all other
covariates (including the intercept) are set to 0. In Appendix 1,
we provide SAS code for implementing this form of data
augmentation.

Bayesian statistical summaries

For rejection sampling and MCMC approaches, we present
the mean of the posterior draws and the approximate
95% posterior interval computed from the mean 6 1.96 times
the standard deviation of the draws. We refer to these as the
Wald limits, and they assume posterior normality. We also
provide the median values and 2.5th and 97.5th percentiles of
the draws, which do not assume normality but are more
sensitive to simulation variability. We estimate the simula-
tion standard deviation by splitting the posterior draws into
5 equal-sized blocks, calculating the standard deviation of
the 5 block-specific means of b1, and dividing by 51/2.

For data augmentation, we present the approximate posterior
mean and 95% posterior interval computed by analyzing the
augmented data (actual observations and pseudo-observations)
using maximum-likelihood logistic regression (9). Thus, the
approximate mean is now the posterior mode (i.e., the point at
which the posterior is maximized), and the Wald posterior
limits are this point 6 1.96 times the estimated standard de-
viation computed from the inverse of the total (i.e., prior and
likelihood) information matrix. This approach also assumes
posterior normality; this assumption can be weakened by
computing penalized-deviance limits, which are profile-
likelihood limits from the full augmented data set (18).

RESULTS

Example 1: magnetic fields and childhood cancer

Table 1 presents results from several analyses of the
leukemia case-control data (8). First shown is the maximum-
likelihood estimate of the log odds ratio and its standard
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error. These yield an estimate of the odds ratio exp(b1)
relating magnetic fields to childhood leukemia of 3.51
(Wald 95% confidence interval: 0.80, 15.4). Next are re-
sults from the 3 approximate Bayesian methods described
above.

From MCMC sampling, the antilog of the posterior
mean of the log odds ratio b1 is 1.69 (95% posterior interval
(PI): 0.58, 4.95). As expected, the odds ratio is shrunk towards
the null center of the prior, with approximately 70% of the
excess odds eliminated; fortuitously, this posterior mean
equals the average odds ratio seen in a pooled analysis of
12 studies, including this study and several much larger ones
(12). The precision is dramatically improved. Specifically, the
ratio of upper confidence limits to lower confidence limits
from maximum likelihood was 19.3, while the ratio of the
posterior limits from MCMC is only 8.6. The estimated
simulation standard deviation of the MCMC mean of b1 was
0.0053. From data augmentation, the antilog of the posterior
mode of b1 was 1.74 (95% PI: 0.60, 5.06), similar to the
MCMC results. From rejection sampling, the antilog of
the posterior mean of the log odds ratio b1 was 1.69
(95% PI: 0.57, 5.00), which is very close to the MCMC
results. The estimated simulation standard deviation of the
rejection-sampling mean of b1 was 0.0034.

The simulation results are further illustrated in Figure 1.
Panel A presents 20,000 draws from the joint prior distribution
of the log odds ratio b1 (x-axis) and the intercept b0 (y-axis).
Panel B presents the 20,000 draws from the joint posterior
distribution of these parameters obtained by rejection sam-
pling, while panel C presents the 20,000 draws from the
joint posterior distribution obtained by the MCMC ap-
proach. The rejection-sampling and MCMC displays are
indistinguishable, apart from random variability.

Example 2: viral load and incident AIDS

Table 2 presents results from analyses of the HIV cohort
data. The maximum-likelihood estimate of the viral-load odds
ratio exp(b1) was 2.92 (95% confidence interval: 1.60, 5.34).
In contrast, the geometric mean odds ratio from MCMC
sampling was 2.47 (95% PI: 1.41, 4.32); again the odds ratio
is shrunk towards the center of the prior. The precision is
also improved, but to a lesser extent than in example 1,
because the data provide stronger evidence relative to the
(same) prior in example 2. The estimated simulation standard
deviation of the MCMC mean of b1 was 0.0006. From data
augmentation, the antilog of the posterior mode of b1 was
2.46 (95% PI: 1.41, 4.29), again close to the MCMC results.
For rejection sampling with M constrained at a maximum of
10,000,000, only one-third as many (i.e., 6,718) posterior
draws were accepted because the acceptance ratio was ex-
ceedingly small, resulting a high rejection rate and a 5.5
times larger simulation error: The estimated simulation
standard deviation of the rejection sampling mean of b1

was 0.0033 (which is still quite small, however). The antilog
of the posterior mean of the log odds ratio b1 was 2.48
(95% PI: 1.41, 4.36), which, as with example 1, is close
to the MCMC results.

DISCUSSION

We have illustrated several methods for obtaining Bayesian
posterior distributions from commercial software. The methods
gave very similar answers in the 2 examples we present.
Each method has strengths and limitations.

Data augmentation using offsets is the most computa-
tionally rapid procedure, running in about the same time

Table 1. Estimated Odds Ratios for Childhood Leukemia According to Residential Exposure to Magnetic Fields

Above 3 mG, Denver, Colorado, 1976–1983a

Method Estimate of b1 SE or SDb OR 5 exp(b1) 95% CI or 95% PIc

Maximum likelihood 1.255 0.754d 3.51 0.80, 15.4e

Bayesianf

MCMCg 0.527 0.546 1.69 0.58, 4.95

0.537 1.71 0.57, 4.76

Rejection samplingg 0.526 0.553 1.69 0.57, 5.00

0.534 1.71 0.56, 4.90

Data augmentationh 0.555 0.544 1.74 0.60, 5.06

Abbreviations: CI, confidence interval; MCMC, Markov chain Monte Carlo; OR, odds ratio; PI, posterior interval;

SD, standard deviation; SE, standard error.
a Data were obtained from a case-control study by Savitz et al. (11).
b Standard deviation unless otherwise specified.
c 95% posterior interval unless otherwise specified.
d Standard error.
e 95% confidence interval.
f All Bayesian methods used a lognormal odds-ratio prior with 95% limits of 1/4 and 4.
g First estimate of b1 is the mean of 20,000 draws; first limits are exp(mean 6 1.96 3 SD), where the mean and

SD are computed from the draws. Second estimate is the median; second limits are the 2.5th and 97.5th percentiles.

The simulation error was 0.0053 for MCMC and 0.0034 for rejection sampling.
h Estimate is the posterior mode (maximum of posterior); limits are exp(mean 6 1.96 3 SD), where the SD is the

b1 diagonal entry from the inverse of the total (i.e., data and prior) information matrix.
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as maximum likelihood; furthermore, its data representation
of the prior provides a gauge of the strength of the prior (8)
and can be used with any software by modifying the original
data set (9). Nonetheless, we have focused on rejection sam-
pling because it may be the most unfamiliar in epidemiology
yet has its own advantages. Unlike MCMC methods, rejec-
tion sampling generates independent draws from the posterior
distribution and raises no concern about convergence to
a stationary distribution, which can be a serious issue for
MCMC methods (19). This is largely because MCMC draws
are serially correlated, whereas rejection sampling produces
independent draws. Unlike maximum likelihood and data
augmentation but like MCMC methods, rejection sampling
need not rely on asymptotic approximations but can instead
directly simulate desired exact statistics, such as posterior
means and percentiles; for this purpose, it is limited in
accuracy only by the computing time required to draw
a sufficiently large sample. For simple problems the re-
jection sampling procedure is faster than MCMC, and the
theory behind it is much more transparent (7). In example 1,
the MCMC procedure with lag 5 took about 5 minutes to
complete, while rejection sampling took about 3 seconds on
the same laptop (i.e., a 2.8-GHz dual-core processor, 3 GB of
RAM, and SAS version 9.2 under Windows XP). This
makes rejection sampling more practical for large-scale
sensitivity analyses, in which the data model and prior
are varied in a systematic fashion over the joint range of
possibilities.

A major limitation of rejection sampling is that the rejection
rate increases rapidly with the number of parameters and
may lead to unacceptably long run times for models with
large numbers of parameters. In example 2, the MCMC with
lag 5 took about 14 minutes to yield 20,000 draws, while our
rejection sampling approach took over 7 hours to yield one-
third as many draws. We expect this limitation of rejection
sampling to occur whenever the prior and the likelihood are
highly disparate, as when the likelihood is far more informa-
tive (i.e., more concentrated) than the prior. One common
setting in which this occurs is when highly dispersed
(‘‘noninformative’’) priors are used. Part of the profound
slowdown we observed, however, reflects our use of SAS
rather than an efficient compiler language (e.g., Cþþ,
Gauss). Other forms of rejection sampling based on taking
draws from a distribution approximating the posterior
(2, 6) can have dramatically lower rejection rates and
hence improved run times but require more sophisticated
implementation.

All of the methods we have illustrated require that the
modeling problem have a well-behaved likelihood function

Figure 1. Log odds ratio (OR) for childhood leukemia according to
residential exposure to magnetic fields, Denver, Colorado, 1976–1983.

Data were obtained from a case-control study by Savitz et al. (11). The
y-axis shows the intercept (i.e., the log odds of being a leukemia
case among the unexposed) (11). Panel A plots a random sample
of size 20,000 from the joint prior distribution; panel B plots the
20,000 rejection-sampling draws from the joint posterior distribution;
and panel C plots the 20,000 Markov chain Monte Carlo draws from
the joint posterior distribution.
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or posterior distribution, something which is typically but
not always the case. For example, ordinary maximum-
likelihood methods and their variants (i.e., conditional and
partial likelihood) assume there is a single and finite max-
imum of the likelihood function, and data augmentation
assumes there is a single and finite maximum of the posterior.
MCMC methods require careful diagnostics to assess mixing
and convergence, and in some cases all of these diagnostics
can fail (19).

Analogously, rejection sampling requires that the dis-
tribution used for sampling adequately covers the posterior
distribution, which can be hard to judge when there are many
model parameters, although comparison of the sampled dis-
tribution to the maximum-likelihood and data-augmentation
results can help detect problems. In addition, rejection sam-
pling as implemented here also requires a single and finite
maximum of the likelihood function. However, large dispar-
ities between a prior distribution and the observed likelihood
(e.g., a large z score for the difference between the prior
mean and the maximum-likelihood estimate) suggest that
it is inadvisable to proceed with a Bayesian analysis using
that prior (8).

There are other approaches to obtaining posterior parameter
distributions that we did not cover—for instance, Laplace’s
method (6) and approximate Bayesian computation (20).
Nonetheless, no matter what method one chooses to com-
pute Bayesian results, it can be valuable to convert the
proposed prior into unrescaled data as a measure of how
much information the prior is contributing to the final re-
sults (8). Unrescaled data augmentation priors provide insight
into the strength of the prior that is often lacking when priors
are specified only by the parameters that govern the prior

distribution. This insight is provided by having to confront
a data set that encodes all prior information; the amount of
information in these pseudodata (represented by the number
of prior cases in typical epidemiologic settings) is difficult to
ignore, and the chances of dramatically overstating or under-
stating prior evidence are probably decreased. From there it
is a minor step to compute the data augmentation posterior,
which can serve as a check on other methods insofar as large
disparities among results may indicate a highly nonnormal
posterior, an MCMC convergence problem, or a programming
error.

Bayesian methods are helpful for handling complex
problems in epidemiology, such as sparse data (9), bias anal-
ysis (21), and problems with multiple, highly correlated
exposures (22). While MCMC procedures have been de-
veloped in widely used statistical software packages, such
as the SAS procedure MCMC and R-callable WinBUGS,
little has been published in the epidemiologic literature to
explain how these complex procedures operate or the cau-
tions needed in their use. In future work, we hope to offer
a detailed description of MCMC methods for the practicing
epidemiologist.

Our rejection-sampling approach may be seen as a bridge
to understanding these more complex methods for sampling
from posterior distributions, rather than as a general Bayesian
method. Nonetheless, rejection sampling can be used as a pri-
mary method when the analysis model is relatively simple, as
in our examples. Smith and Gelfand’s landmark primer on
rejection sampling was titled ‘‘Bayesian statistics without
tears’’ (10). We hope that our review here likewise pro-
motes use of Bayesian methods in epidemiology without
unnecessary suffering.

Table 2. Estimated Odds Ratios for Incident AIDS According to Human Immunodeficiency Virus Viral Load Set

Point, Multicenter AIDS Cohort Study, 1984–1998a

Method Estimate of b1 SE or SDb OR 5 exp(b1) 95% CI or 95% PIc

Maximum likelihood 1.072 0.308d 2.92 1.60, 5.34e

Bayesianf

MCMCg 0.905 0.285 2.47 1.41, 4.32

0.905 2.47 1.42, 4.32

Rejection samplingg 0.908 0.288 2.48 1.41, 4.36

0.900 2.46 1.41, 4.42

Data augmentationh 0.901 0.283 2.46 1.41, 4.29

Abbreviations: AIDS, acquired immunodeficiency syndrome; CI, confidence interval; MCMC, Markov chain

Monte Carlo; OR, odds ratio; PI, posterior interval; SD, standard deviation; SE, standard error.
a Data were obtained from the Multicenter AIDS Cohort Study (13). Results were adjusted for age and race.
b Standard deviation unless otherwise specified.
c 95% posterior interval unless otherwise specified.
d Standard error.
e 95% confidence interval.
f All Bayesian methods used a lognormal odds-ratio prior with 95% limits of 1/4 and 4.
g First estimate of b1 is the mean of 20,000 draws or 6,718 rejection-sampling draws; first limits are

exp(mean 6 1.96 3 SD), where the mean and SD are computed from the draws. Second estimate is the median;

second limits are the 2.5th and 97.5th percentiles. The simulation error was 0.0006 for MCMC and 0.0033 for

rejection sampling.
h Estimate is the posterior mode (maximum of posterior); limits are exp(mean6 1.963 SD), where the SD is the b1

diagonal entry from the inverse of the total (i.e., data and prior) information matrix.
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APPENDIX 1

Details of the Markov chain Monte Carlo (MCMC)
approach

The SAS procedure GENMOD uses a Gibbs sampler based
on an adaptive Metropolis rejection sampling algorithm, also
known as an ARMS algorithm, to draw a sample from a full
conditional distribution. (This approach is described at http://
www.maths.leeds.ac.uk/~wally.gilks/adaptive.rejection/web_
page/Welcome.html.) A Markov chain is a stochastic process
whereby only the current status (and not the past history) of
the process is required to make predictions about the future
status of the process at a given transition step. A stationary
distribution is the limit of the k-step transition intensity, as
k goes to infinity.
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SAS code for obtaining MCMC posterior samples

*Bayes by MCMC;
data prior;

input _type_ $ Intercept x;
cards;
Var 100 0.5
Mean 0 0

;
*data a contains the original data with y a case indicator, n always 1, and x an exposure indicator;
proc genmod data¼a;

model y/n¼x/d¼b;
bayes seed¼1 nbi¼1000 nmc¼100000 thin¼5 coeffprior¼normal(input¼prior) diag¼autocorr diag¼gelman(nchain¼3);
title ‘‘Bayes by MCMC’’;

SAS code for obtaining posterior approximation by data augmentation

*Bayes by data augmentation;
data priorint;

y¼500; n¼1000; s2¼100; s¼sqrt(s2*y/2); int¼1/s; h¼log(y/(n-y))-(log(1)/s); x¼0;
data priorx;

y¼500; n¼1000; s2¼.5; s¼sqrt(s2*y/2); x¼1/s; h¼log(y/(n-y))-(log(1)/s); int¼0;
*data a contains the original data with y a case indicator, n always 1, and x an exposure indicator;
data da;

set a priorint priorx;
if h¼. then h¼0;

proc genmod data¼da;
model y/n¼int x/d¼b noint offset¼h;
title ‘‘DA’’;

APPENDIX 2

Example SAS Code for Rejection-Sampling Analysis of Case-Control Data on Residential Magnetic Fields and
Childhood Leukemia

data post;
retain count draw 0;
call streaminit(3);
rho¼0;
do while (count<20000 and draw<10000000);

draw¼drawþ1;
*create prior;
intercept¼rand(‘‘normal’’)*sqrt(100)þ0;
x¼rand(‘‘normal’’)*sqrt(.5*(1-rho**2))þ(0þrho*(sqrt(.5)/sqrt(100))*(intercept-0));
u¼rand(‘‘uniform’’);
*calculate posterior;
muXeq0¼exp(intercept)/(1þexp(intercept));
muXeq1¼exp(interceptþx)/(1þexp(interceptþx));
if muXeq0¼1 then muXeq0¼0.99999;
if muXeq1¼1 then muXeq1¼0.99999;
*below are hard-coded numbers from the 2x2 table and maxlogl;
logl¼33*log(muXeq0)þ(226-33)*log(1-muXeq0)þ3*log(muXeq1)þ(8-3)*log(1-muXeq1);
maxlogl¼-99.2495;
if u<¼exp(logl-maxlogl) then do;

count¼countþ1;
output;

end;
end;
keep draw intercept x;

run;
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