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Original Article

Background: Bayesian methods can be used to incorporate external 
information into epidemiologic exposure–response analyses of silica 
and lung cancer.
Methods: We used data from a pooled mortality analysis of silica and 
lung cancer (n = 65,980), using untransformed and log-transformed 
cumulative exposure. Animal data came from chronic silica inhalation 
studies using rats. We conducted Bayesian analyses with informative 
priors based on the animal data and different cross-species extrapo-
lation factors. We also conducted analyses with exposure measure-
ment error corrections in the absence of a gold standard, assuming 
Berkson-type error that increased with increasing exposure.
Results: The pooled animal data exposure–response coefficient was 
markedly higher (log exposure) or lower (untransformed exposure) than 
the coefficient for the pooled human data. With 10-fold uncertainty, the 
animal prior had little effect on results for pooled analyses and only 
modest effects in some individual studies. One-fold uncertainty pro-
duced markedly different results for both pooled and individual studies. 
Measurement error correction had little effect in pooled analyses using 
log exposure. Using untransformed exposure, measurement error cor-
rection caused a 5% decrease in the exposure–response coefficient for 
the pooled analysis and marked changes in some individual studies.
Conclusion: The animal prior had more impact for smaller human 
studies and for one-fold versus three- or 10-fold uncertainty. Adjust-
ment for Berkson error using Bayesian methods had little effect on 
the exposure–response coefficient when exposure was log trans-
formed or when the sample size was large. See video abstract at, 
http://links.lww.com/EDE/B160.

(Epidemiology 2017;28: 281–287)

The incorporation of animal and other nonhuman data into 
epidemiologic analyses is currently a topic of interest to 

many, including the International Agency for Research on 
Cancer (IARC) which classifies substantives with regard to 
their carcinogenicity. IARC convened a workshop on quanti-
tative risk assessment in 2013; this workshop recommended 
formal consideration of mechanistic data and animal studies 
in quantitative risk assessment for humans, without outlining 
how this might be done.1 Bayesian analyses are increasingly 
used in a wide variety of fields to incorporate prior knowledge 
and beliefs, and to constrain parameter estimates to be within 
bounds believed to be reasonable, a priori. Here, we demon-
strate the application of Bayesian methods to dose–response 
analysis using both human and animal studies and adjusting for 
exposure measurement error in the human studies, using silica 
exposure and lung cancer as an example. Silica is carcinogenic 
to humans (group 1) according to the International Agency for 
Research on Cancer. It is a common occupational exposure in 
many parts of the world, and the US Occupational Safety and 
Health Administration has recently lowered the occupational 
permissible limit in the United States, based on the relatively 
extensive human exposure–response data. In addition, there are 
several well-conducted animal studies of silica and lung cancer 
with multiple doses, providing dose–response information from 
experiments using controlled doses.

The first main feature of this article is the incorporation 
of both human and animal data in the same dose–response anal-
ysis. Information from experimental animal models provides 
prior data on the exposure–response between inhaled silica 
and subsequent development of lung carcinomas, but interspe-
cies extrapolation of animal results to human are fraught with 
uncertainties due to differences in metabolism across species, 
typically greater doses to animals than are experienced by 
humans, different routes of exposure, and fewer concomitant 
exposures that could affect cancer risk. Despite these limita-
tions, long-term cancer bioassays are predictive for identifying 
human carcinogens; the overwhelming majority of established 
human carcinogens have also been shown to cause cancer in 
animals.2,3 Moreover, regulatory agencies such as the US Envi-
ronmental Protection Agency (EPA) and US Food and Drug 
Administration have long used animal cancer data to identify 
and regulate potential carcinogens and estimate plausible upper 
bounds on cancer risks for human exposures.4,5
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Our analyses also include adjustments for measurement 
error in the absence of a gold standard error-free measure-
ment, which might be used for calibration. Human exposure–
response studies always involve measurement error. In the 
case of silica measurement, there are two obvious sources of 
possible error. The first is the assignment of silica concentra-
tions to specific jobs/industries based on a sample of actual 
measurements of silica among workers in these same specific 
jobs/industries. The second is the conversion of older measure-
ments of silica in units of millions of dust particles per cubic 
feet to silica gravimetric units of mg/m3. Conversion from 
dust particle counts to silica mass depends on the composition 
and particle size distribution of the dust, which vary across 
jobs; the conversion factor is based on the average value from 
a sample of dust measurements. Both of these sources of mea-
surement error are likely to be errors primarily of the Berkson 
type, in which the true value is equal to the assigned value 
plus a statistically independent error term, rather than the clas-
sical type, in which the assigned value is equal to the true 
plus an independent error term.6 Berkson-type measurement 
error often arises in occupational and environmental settings, 
in which a group-level exposure value (e.g., based on average 
exposure for a particular job or neighborhood) is assigned to 
every individual in that group.7–10

In linear models, additive Berkson error with constant 
variance does not bias exposure–response coefficients but 
does increase their variance.6,7 However, in log-linear mod-
els when the error variance increases as exposure increases, 
and disease is rare, Berkson error can result in biased expo-
sure–response coefficients, with either over- or under-estima-
tion.8–12 Increasing error variance with increasing exposure is 
typical of many occupational settings, and there is evidence 
of this for occupational silica exposures.13 Furthermore, when 
measurement error increases with exposure, and when cases 
have higher exposure than noncases, error will also be a func-
tion of case status, that is, will be differential. Thus, cases will 
typically have more measurement error and higher true expo-
sures than noncases in the same jobs.

Absent any gold standard measurement data on a subset 
of the cohort, Monte-Carlo sampling can be used to simulate 
the effect of nondifferential Berkson error.13,14 However, the 
additional complexities of accounting for the correlation of 
cases status with error are more easily confronted by building 
the error models as priors into a Bayesian analysis.15–17

We illustrate both these Bayesian applications in a large, 
multicentric, IARC-sponsored analysis of 10 silica-exposed 
cohorts.18

METHODS

Human Data
We used data from a previously published exposure–

response analysis of lung cancer due and silica exposure in 
10 retrospective silica-exposed cohorts with a total of 65,980 

workers and 1,069 lung cancer deaths.18 The 10 cohorts 
included gold miners, granite workers, industrial sand workers, 
and other types of miners. Cohorts with appreciable exposures 
to other known lung carcinogens were excluded. Quantitative 
exposure estimates over time for all jobs held by workers in 
these cohorts were available19 via job-exposure matrices for 
each cohort. Application of the matrices to the work histories 
of each individual worker enabled the estimation of exposure 
levels across all work histories, and hence the quantitative esti-
mation of cumulative exposure for all workers. For the pooled 
cohort data, the median cumulative lagged exposure was 
2.42 mg/m3-years (IQR: 0.31, 7.78) among cases and 1.99 mg/
m3-years (IQR: 0.19, 6.86) among matched controls.

Exposure–Response Models
We use nested case–control design via incidence den-

sity sampling and the conditional logistic regression likeli-
hood L(β) to estimate the exposure–response coefficient (β) 
for silica exposure and lung cancer mortality:
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where I is the number of cases, Ji is the number of individu-
als in the risk set for case i, xi1 is the silica exposure for case 
i, and xij is the silica exposure for individual j from the risk 
set for case i. The model was fit using both untransformed 
and log-transformed cumulative silica exposure (adding 1 mg/
m3-day before converting to mg/m3-years and taking the log), 
both with 15-year lags. Up to 10 matched controls from the 
same cohort were randomly selected for each case, matching 
on sex, race, and age (within 5 years). We used 10 controls per 
case but note that the originally published analysis used 100 
controls per case.18

Animal Prior
We used laboratory animal data to characterize the prior 

on β, rather than using a naive diffuse prior. Our inclusion 
criteria were that each study had to have rodents exposed via 
inhalation and lung cancer as an endpoint, with observation 
over a 24-month period. Studies were identified by reviewing 
IARC’s Monographs 68 and 100C on silica.20,21 Three studies 
summarized in Monograph 68 fulfilled our criteria.22–24 Three 
other rodent inhalation studies were excluded due to lack of 
information regarding the exposure concentration, the length 
of exposure, or the length of follow-up.

Regarding the three included studies, Spiethoff et al.22 
observed two groups of 82 female Wistar rats exposed to 
either 6 or 30 mg/m3 crystalline silica for 29 days, and after 
24 months 8 and 13 rats developed lung cancer in the low- 
and high-exposure groups, respectively. Among 85 nonex-
posed rats none developed carcinoma of the lung. Muhle et 
al.23 observed one group of 50 males and 50 female Fischer 
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rats for 25.5 months, during which time they were exposed to 
1 mg/m3 crystalline silica for 96 weeks, and among which 13 
lung carcinomas developed. In a comparison group of 50 male 
and 50 female nonexposed rats, there was one lung carcinoma. 
Holland et al.24 observed 60 female Fischer rats exposed to 
12 mg/m3 crystalline silica for the rats’ lifespan (assumed to 
be approximately 24 months), among which 14 developed 
lung carcinomas, compared with 0 of 69 nonexposed rats. To 
establish a prior distribution, we ignored potential effects of 
different rat strains or genders, and pooled the data from the 
three studies.

We ran logistic models using the five dose groups 
from the combined studies (0, 25, 96, 124, and 996 mg/m3-
weeks). Time-dependent data were not available to compute 
lagged exposure or rate ratios, so we used cumulative expo-
sure without any lag, and assumed that the odds ratio from 
cumulative incidence data was approximately equal to the 
corresponding rate ratio, a reasonable assumption for rare 
outcomes.25 The predictor was cumulative exposure to silica 
(mg/m3-years) or log cumulative exposure, with a lifespan 
conversion assuming that one rat day was equivalent to 30 
human days.26 In the log model, 1 mg/m3-year was added to 
cumulative dose to avoid taking the log of 0.

To develop a Bayesian prior for the human exposure–
response coefficient from the animal exposure–response 
coefficient, we adopted a probabilistic model for a cross-
species extrapolation factor as suggested by a recent 
National Research Council (NRC) panel which reviewed 
the EPA’s Integrated Risk Information System.27 Our model 
assumes that the hazard ratio for humans (HR) is equal to 
the hazard ratio for rats (HRrat) multiplied by a cross-spe-
cies extrapolation factor U. It follows that, on the log scale, 
the human exposure–response coefficient (β) is equal to the 
rat exposure–response coefficient (βrat) plus the log of U, 
that is,

β β= = ∗ = ( ) + ( ) = + ( )ln HR ln HR ln HR lnrat rat rat( ) ( ) lnU U U

We chose a normal distribution for βrat, with the mean and stan-
dard deviation set to the point estimate and standard error from 
logistic regression of the rat data. Following the NRC recom-
mendation, we chose a normally distributed prior on ln(U), cen-
tered on 0 and with a standard deviation of σU, that is,

ln U N
U

( ) ∼ ( )0 2, ,σ

where σU = 1.175, 0.561, or 0 for 10-, three-, or one-fold 
uncertainty, respectively.27 For example, with σU = 1.175 (10-
fold uncertainty), the central 95% of the probability distribu-
tion for U ranges from 1/10 to 10, and the median value is 1. 
Cross-species extrapolation factors of 3 and 10 are typically 
used for noncancer endpoints27,28 but could also be reasonable 
for carcinogens given the good concordance between rat bio-
assays and human data.

Measurement Error
As noted above, we focused on two sources of mea-

surement error, both of which were errors of the Berkson 
type. The first was measurement error due to assignment 
of job-specific means to individual workers. In the silica 
cohort, the exposure level for specific subjects was not mea-
sured directly, but was assigned based on measurements for 
a sample of subjects in the same job, or based on estimated 
levels for specific jobs in the past when no measurements 
were available, via a job-exposure matrix.19 We assumed that 
the assigned job-specific mean was equal to the true mean 
exposure level for workers in that specific job. However, 
assignment of exposure level to individual workers using the 
mean level for specific jobs necessarily results in error in the 
assigned exposure level compared with the true exposure for 
each individual.

The second type of Berkson error was error due to incor-
rect conversion of dust to silica. Historically, measurements of 
dust were available to estimate the mean level of exposure per 
job. However, the silica concentration (mg/m3) is the metric of 
interest to regulators. Hence Mannetje et al.19 converted dust 
measurements to silica, based either on data provided in the 
literature or by the original authors of the six cohort studies. 
Often a single conversion factor was used (e.g., silica repre-
sented 30% of the respirable dust in the South African cohort), 
although sometimes the conversion factor varied by time period 
or facility. If a single conversion factor was used for a cohort, it 
may have failed to take into account differences in conversion 
factors by work area or job (e.g., if different areas in a mine had 
different kinds of dust). The use of a single conversion factor 
across jobs and work areas is likely to have introduced addi-
tional measurement error, albeit at the group (job) level rather 
than the individual level.

Error Model for Assignment of Mean Job Level 
to Each Worker

We assumed that the assigned exposure level for each 
worker for each work history (a job/area/time period com-
bination specific for each worker) was in error. We assumed 
that the true individual worker exposure level varied log nor-
mally around the level μj assigned to all workers in each job/
area/time period combination (hereafter referred to as “job”), 
with a constant coefficient of variation k:

σ µj jk= ,

where σj is the standard deviation of personal exposures for 
job j. The log mean (μlnj) and log standard deviation (σlnj) of a 
log-normal distribution have the following relationship29 to its 
arithmetic mean (μj) and standard deviation (σj):

µ µ µ σ σ σ µln lnln lnj j j j j j j= √ +( ){ } = √ + ( ){ }





2 2 2 2 21, ,

which simplify to the following for σj = kμj:
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We used k = 0.80, estimated from 37 measurements at 
one worksite of an industrial sand plant.30

Error Model for Conversion of Dust 
Concentrations to Silica Concentrations

A coefficient of variation of about 50% was reported 
for the dust to silica conversion factor based on 500 samples 
across 23 jobs in a South Africa gold mine31; we assumed that 
this degree of variation was applicable to all of our cohorts 
and normally distributed (with truncation to prevent unre-
alistic outliers). Other data are available for silica-exposed 
workers,32,33 which tend to support variation in this range for 
job-specific conversion factors.

Thus, the true exposure zij experienced by person i 
during job j is described with a series of probability models 
incorporating both types of error (group mean assignments 
and dust to silica conversion):

ln ln ln
z Nij j j

∼ ( )µ σ, 2

µ µln lnj j= √ +( ){ }0 8 12.

σ ln lnj = √ +( ){ }
0 8 12.

µ j jx N∼ ( )1 0 5 0 1 1 92, . , . . ,truncated at and

where xj is the measured group mean exposure for job j (shared 
by all workers with the same job/area/time period). Cumula-
tive exposure for person i is computed as the product of zij 
and the time spent in job j, summed over all jobs held by that 
person up until 15 years before the case age. Notably, work-
ers who share the same job/area/time period have the same 
conversion error, resulting in a shared-error structure that con-
trasts with independence assumptions underlying much of the 
measurement error literature.9,10

Bayesian Analysis
As noted earlier, measurement errors are differential by 

case status when error increases with level of exposure. How-
ever, the correlation coefficient between error and case status 
depends on the unknown exposure–response coefficient. One 
potential solution to this problem is a Bayesian analysis with 
a model that directly incorporates any correlations between 
response and error induced by the exposure–response rela-
tionship, without any need for the investigator to specify the 
correlation. Hence, we conducted a Bayesian analysis using 
the animal priors and Berkson measurement error structure 
described in the previous sections, with the two sources of 
exposure measurement error included as latent variables.

Samples from the posterior distribution of β were gen-
erated using Markov chain Monte Carlo techniques imple-
mented with Just Another Gibbs Sampler software and the R 
programming environment.34,35 Because job was one of the 
two levels of measurement error and individuals had often 
worked at more than one job, cumulative exposures were 
repeatedly reconstructed from individual work histories with 
different draws from the latent measurement error variables 
at each Markov chain iteration. Models were run for 10,000 
iterations with a 1,000 iteration burn-in period. Three separate 
chains were used to evaluate convergence using the Gelman-
Rubin diagnostic, and means and standard deviations were 
computed for the posterior samples. Computer code for sev-
eral of the analyses is provided in the eAppendix 1 (http://
links.lww.com/EDE/B141).

RESULTS

Rat Data
The Figure shows the rodent carcinogenesis data, in 

terms of log odds, after converting a rat lifespan to a human 
lifespan, for both the observed data and the results of the 
cumulative exposure and log cumulative exposure models.

For the log cumulative dose model, the exposure–
response coefficient βrat from logistic regression with the rat 
data was 0.51 per mg/m3-year (standard error 0.085), about 
nine times the corresponding hazard coefficient of 0.061 from 
frequentist analysis of the human data (Table 1). βrat for the 
cumulative dose model was 0.003 per mg/m3-year (standard 
error 0.001), about one-third of the corresponding human 
coefficient of 0.009. Although the animal data were sparse, 
which limited assessment of goodness of fit, the log cumula-
tive dose model fit better than the untransformed cumulative 
dose model (Akaike information criterion 291.0 vs. 313.9).

Epidemiologic Analyses
Table 1 shows the results of the epidemiologic analy-

ses, both for a frequentist analysis (no use of the animal 
data) and Bayesian analysis including a prior based on βrat 
and one-, three-, and 10-fold uncertainty in the cross-species 
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FIGURE.  Rat exposure–response relationship for silica and 
lung cancer in three studies.
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extrapolation factor. Results are shown for pooled analysis of 
all epidemiologic studies and for two selected studies. For the 
pooled analyses using rat priors with three- and 10-fold uncer-
tainty, the frequentist and Bayesian results were nearly iden-
tical. However, with one-fold uncertainty, the rat data were 
more influential; for each exposure metric the posterior mean 
is drawn toward the point estimate for βrat.

For individual epidemiologic studies, the impact of 
the animal prior varied. Results are shown for two example 
studies in Table 1; these studies were selected to highlight 
potential impacts of Bayesian incorporation of animal data. 
For example, for study 4 using log exposure, the frequen-
tist coefficients were 0.160 per log mg/m3-year for humans 
and 0.51 per log mg/m3-year for rats. Each of the Bayesian 
posterior means for study 4 (0.174, 0.185, and 0.408 per 
log mg/m3-year) are weighted averages of the human and 
rat coefficients, with more weight given to the human coef-
ficient as the uncertainty increases from one- to three-fold 
to 10-fold. Similar patterns are evident for each study and 
for both exposure metrics, although for many studies there 
is little difference in posterior means using three- or 10-fold 
uncertainty.

Table 2 shows the effect of a Bayesian adjustment for 
exposure measurement error, along with the rat prior using 
three-fold uncertainty. In the pooled analysis, there are only 
modest effects from measurement error adjustment for either 
of the two exposure metrics. For log exposure, the effect of 
measurement error adjustment is negligible, and for untrans-
formed exposure there is only a 5% decrease in the poste-
rior mean from 0.0092 to 0.0087 per mg/m3-year, that is, a 
slight move toward the rat coefficient of 0.003. Similarly, 
measurement error adjustment has modest impact in study 
4, for which the posterior mean decreases by about 3% for 
each exposure metric. In contrast, in study 9, error adjust-
ment results in an 18% decrease in the posterior mean for the 
effect of untransformed exposure. In each case, adjustment 
for measurement error in the human studies moves the poste-
rior mean toward the rat coefficient (although in some cases 
the movement is negligible).

DISCUSSION
For some environmental toxicants, both human and ani-

mal studies are available to inform researchers and regulatory 
agencies about potential health effects of exposure. However, 
it is unclear how to weigh these different types of information 
in modeling exposure–response relationships. Animal studies 
conducted using randomized assignment to treatment, blinding, 
and other good laboratory practices have few threats to internal 
validity but questionable relevance for estimating exposure–
response coefficients in humans. Human studies are conducted 
in more relevant populations but are typically conducted using 
observational designs in which exposures and confounders can 
be difficult to identify and measure accurately. Quantitative 
methods are needed for combining data from multiple stud-
ies in humans and animals in ways that respect their relative 
strengths and weaknesses, especially by regulatory agencies 
charged with developing a single exposure–response coeffi-
cient or “safe” exposure level for each toxicant.27

Although previous analyses have used Bayesian meth-
ods to combine toxicity data from human and animal stud-
ies,36,37 here we applied a new method of incorporating 
cross-species uncertainty using probabilistic interpretations 

TABLE 1.  Hazard Coefficient (β) for Silica and Lung Cancer Mortality, with No Prior (Frequentist Analysis) and with Three 
Animal-based Priors, for Pooled Analysis of 10 Epidemiologic Studies and for Selected Individual Studies

Pooled Analysis (1,066 Cases) Study 4 (135 Cases) Study 9 (81 Cases)

Prior Exposure Metric Coefficient (SD) Coefficient (SD) Coefficient (SD)

None Log mg/m3-years 0.061 (0.015) 0.160 (0.118) 0.084 (0.040)

Rat prior w/10-fold uncertainty Log mg/m3-years 0.062 (0.015) 0.174 (0.116) 0.087 (0.040)

Rat prior w/three-fold uncertainty Log mg/m3-years 0.062 (0.015) 0.185 (0.117) 0.088 (0.040)

Rat prior w/one-fold uncertainty Log mg/m3-years 0.076 (0.015) 0.408 (0.072) 0.170 (0.039)

None mg/m3-years 0.009 (0.002) 0.012 (0.013) 0.007 (0.018)

Rat prior w/10-fold uncertainty mg/m3-years 0.009 (0.002) 0.011 (0.013) 0.005 (0.018)

Rat prior w/three-fold uncertainty mg/m3-years 0.009 (0.002) 0.011 (0.013) 0.005 (0.018)

Rat prior w/one-fold uncertainty mg/m3-years 0.003 (0.001) 0.003 (0.001) 0.003 (0.001)

TABLE 2.  Hazard Coefficient (β) for Silica and Lung Cancer 
Mortality, With and Without Adjustment for Exposure 
Measurement Error, for Pooled Analysis of 10 Epidemiologic 
Studies and for Selected Individual Studies, Using a Rat Prior 
with Three-fold Uncertainty

Error 
Adjustment

Exposure 
Metric

Pooled Analysis 
(1,066 Cases)

Study 4 (135 
Cases)

Study 9 (81 
Cases)

Coefficient  
(SD)

Coefficient 
(SD)

Coefficient 
(SD)

No Log mg/m3- 

years

0.062 (0.015) 0.19 (0.12) 0.088 (0.040)

Yes Log mg/m3- 

years

0.062 (0.015) 0.18 (0.12) 0.088 (0.041)

No mg/m3-years 0.0092 (0.0024) 0.011 (0.013) 0.0051 (0.018)

Yes mg/m3-years 0.0087 (0.0023) 0.011 (0.013) 0.0042 (0.019)
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of traditional extrapolation factors commonly used in risk 
assessment. Although we used software to generate posterior 
samples, for log-normal uncertainty models without mea-
surement error adjustment (Table 1), the same results can be 
obtained without specialized software using inverse-variance 
weighted averages.27 These methods may be useful for a vari-
ety of chemicals for which both human and animal data are 
available to support quantitative dose–response modeling.

We have also accounted for the effects of Berkson expo-
sure measurement error of the type and degree specified by 
our model, which can contribute bias and uncertainty in the 
exposure–response coefficient.8 Although we do not have any 
gold standard measurement to use as a basis for correcting for 
measurement error, we used Bayesian methods to go beyond a 
Monte-Carlo simulation of random error, via incorporation of 
the dependence of error on disease status (i.e., differential error).

Although measurement error adjustment and the animal 
priors with three- or 10-fold uncertainty did not have a major 
impact on the posterior exposure–response coefficient in our 
large sample pooled analyses, they did influence the results for 
some of the individual cohorts. This is consistent with general 
principles of Bayesian inference, in which the prior is given less 
weight as the sample size increases and the data are given less 
weight as measurement error increases. In situations for which 
the human studies are fewer or have smaller sample sizes, mea-
surement error adjustment and the animal prior are expected to 
have larger impacts.

We did not restrict the parameter space for β. Some 
toxicologic dose–response models exclude any possibility of 
protective effects, which could be accomplished by truncating 
the prior at 0 or using a log-normal or gamma prior. For each 
of our pooled analyses, less than 0.02% of the posterior dis-
tribution falls below 0, and truncation would have negligible 
impact. However, it could have more of any impact on study 4, 
for which negative values constitute up to 20% of the posterior 
distribution.

Our model includes several prior parameters based on 
limited sampling, such as the 80% coefficient of variation for 
random error in the variation of individual worker exposures 
around the mean value for each job, based on measurements 
of 37 workers at one worksite. Although we did not account 
for it in our analyses, each of these parameters has some sam-
pling uncertainty that could be addressed using an additional 
probability distribution and hyperparameters.17 Given the 
modest impact of our measurement error model on the results, 
we suspect that incorporating the additional sampling uncer-
tainty would have minimal impact on our findings.

Another limitation of our analysis is the use of a 15-year 
lag to compute cumulative exposure in humans, but no such 
lag for rats. Incorporating a lag could decrease the cumula-
tive exposure in one or more of the rat studies, which would 
increase the prior hazard coefficient (βrat). This is unlikely to 
affect the posterior for the pooled data, which appears largely 
unaffected by the prior when the cross-species extrapolation 

factor is greater than 1, but could have some impact on the 
results for the smaller studies.

We did not account for some potential threats to the 
validity of the exposure–response estimates, such as mea-
surement error in the confounders, healthy worker effects, 
non-Berkson (i.e., classical) exposure measurement error, 
or unidentified coexposures. We chose to focus our efforts 
on exposure measurement error and cross-species extrapola-
tion as the two most important sources of uncertainty for the 
studies on silica and lung cancer, but in other epidemiologic 
settings (particularly with nonoccupational exposures) uncon-
trolled confounding may be a more serious threat to validity. 
In theory, a probability model could be specified for any of 
these threats in each study, as suggested by Lash and Fink,13 
and incorporated into the Bayesian analysis to combine the 
information across the human and animal studies.
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